Skip to main content

Conversion of Methanol and Methylamines to Methane and Carbon Dioxide

  • Chapter
Methanogenesis

Part of the book series: Chapman & Hall Microbiology Series ((CHMBS))

Abstract

The first report on methane formation from a methylated one-carbon compound, notably methanol, goes back to 1920 (Groenewegen, 1920). In the thirties, methylotrophic methanogens were systematically studied in the laboratory of Kluy ver and Van Niel (1936). Here, Barker (1936) enriched an organism, then called Methanococcus mazei, which was capable of growth not only on methanol, but also on butanol and acetone. The organism was not pure and the original cultures were lost. Only about 40 years later, the methanogen that met the original description was reisolated and renamed Methanosarcina mazei (Mah, 1980; Mah and Kuhn, 1984). The first methylotroph obtained in axenic culture, and in fact one of the first pure methanogenic species, was isolated by Schnellen (1936), a student of Kluyver. Again, the original cultures of the organism, Methanosarcina barkeri, were lost. M. barkeri has been reisolated as a number of distinct strains from a variety of sources. The type strain, MS, was obtained by Bryant in 1966 (Bryant, 1966; Bryant and Boone, 1987). Biochemically, M. barkeri is the best studied methylotrophic methanogen and most of the work reviewed in this chapter refers to it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Aceti, D.J., and J.G. Ferry. 1988. Purification and characterization of acetate kinase from acetate grown Methanosarcina thermophila. Evidence for regulation of synthesis. J. Biol. Chem. 263:15444–15448.

    PubMed  CAS  Google Scholar 

  • Ahn, Y.H., J.A. Krrzycki and H.G. Floss. 1991. Steric course of the reduction of ethyl coenzyme M to ethane catalyzed by methyl coenzyme M reductase from Methanosarcina barkeri. J. Am. Chem. Soc. 113:4700–4701.

    Article  CAS  Google Scholar 

  • Ahring, B.K., P. Westermann and R.A. Mah. 1991. Hydrogen inhibition of acetate metabolism and kinetics of hydrogen consumption by Methanosarcina thermophila TM-1. Arch. Microbiol. 157:38–42.

    Article  CAS  Google Scholar 

  • Albracht, S.P.J., D. Ankel-Fuchs, R. Böcher, J. Ellermann, J. Moll, J.W. van der Zwaan, and R.K. Thauer. 1988. Five new EPR signals assigned to nickel in methyl-coenzyme M reductase from Methanobacterium thermoautotrophicum, strain Marburg. Biochim. Biophys. Acta 955:86–102.

    Article  CAS  Google Scholar 

  • Balch, W.E., L.J. Magrum, C.R. Woese, and R.S. Wolfe. 1979. Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43:260–296.

    PubMed  CAS  Google Scholar 

  • Baresi, L. 1984. Methanogenic cleavage of acetate by lysates of Methanosarcina barkeri. J. Bacteriol. 160:365–370.

    PubMed  CAS  Google Scholar 

  • Baresi, L., and R.S. Wolfe. 1981. Levels of coenzyme F420, coenzyme M, hydrogenase and methylcoenzyme M methylreductase in acetate-grown Methanosarcina. Appl. Environ. Microbiol. 41:388–391.

    PubMed  CAS  Google Scholar 

  • Barker, H.A. 1936. Studies upon the methane-producing bacteria. Arch. Mikrobiol. 4:420–438.

    Article  Google Scholar 

  • Bhatnagar, L., J.A. Krzycki, and J.G. Zeikus. 1987. Analysis of hydrogen metabolism in Methanosarcina barkeri: regulation of hydrogenase and role of CO-dehydrogenase in H2 production. FEMS Microbiol. Lett. 41:337–343.

    Article  CAS  Google Scholar 

  • Bhosale, S.B., S.S. Nilegeonkar, T.Y. Yeole, and D.C. Kshirsagar. 1989. Evidence for the existence of multiple forms of hydrogenase in Methanosarcina. Biochem. Int. 19:1095–1108.

    CAS  Google Scholar 

  • Bhosale, S.B., T.Y. Yeole, and D.C. Kshirsagar. 1990. Distribution of transition metal ions in multiple forms of Methanosarcina hydrogenase. FEMS Microbiol. Lett. 70:241–248.

    CAS  Google Scholar 

  • Biavati, B., M. Vasta, and J.G. Ferry. 1988. Isolation and characterization of “Methanosphaera cuniculi” sp.nov. Appl. Environ. Microbiol. 54:768–771.

    PubMed  CAS  Google Scholar 

  • Blaut, M., and G. Gottschalk. 1982. Effect of trimethylamine on acetate utilization by Methanosarcina barkeri. Arch. Microbiol. 133:230–235.

    Article  CAS  Google Scholar 

  • Blaut, M., and G. Gottschalk. 1984. Coupling of ATP synthesis and methane formation from methanol and molecular hydrogen in Methanosarcina barkeri. Eur. J. Biochem. 141:217–222.

    Article  PubMed  CAS  Google Scholar 

  • Blaut, M., and G. Gottschalk. 1985. Evidence for a chemiosmotic mechanism of ATP synthesis in methanogenic bacteria. Trends Biochem. Sci. 10:486–489.

    Article  CAS  Google Scholar 

  • Blaut, M., V. Müller, K. Fiebig, and G. Gottschalk. 1985. Sodium ions and an energized membrane required by Methanosarcina barkeri for the oxidation of methanol to the level of formaldehyde. J. Bacteriol. 164:95–101.

    PubMed  CAS  Google Scholar 

  • Blaut, M., V. Müller, and G. Gottschalk. 1986. Mechanism of ATP synthesis and role of sodium ions in Methanosarcina barkeri growing on methanol. Syst. Appl. Microbiol. 7:354–357.

    Article  CAS  Google Scholar 

  • Blaut, M., S. Peinemann, U. Deppenmeier, and G. Gottschalk. 1990. Energy transduction in vesicles of the methanogenic strain Göl. FEMS Microbiol. Rev. 87:367–372.

    CAS  Google Scholar 

  • Blaylock, B.A. 1968. Cobamide-dependent methanol-cyanocob(I)alamin methyltransferase of Methanosarcina barkeri. Arch. Biochem. Biophys. 124:314–324.

    Article  PubMed  CAS  Google Scholar 

  • Blaylock, B.A., and T.C. Stadtman, 1963. Biosynthesis of methane from the methyl moiety of methylcobalamin. Biochem. Biophys. Res. Commun. 11:34–38.

    Article  PubMed  CAS  Google Scholar 

  • Blaylock, B.A., and T.C. Stadtman. 1964. Enzymic formation of methylcobalamin in Methanosarcina barkeri extracts. Biochem. Biophys. Res. Commun. 17:475–480.

    Article  CAS  Google Scholar 

  • Blaylock, B.A., and T.C. Stadtman. 1966. Methane biosynthesis by Methanosarcina barkeri. Properties of the soluble enzyme system. Arch. Biochem. Biophys. 116:138–152.

    Article  PubMed  CAS  Google Scholar 

  • Blotevogel, K.-H., and U. Fischer. 1989. Transfer of Methanococcus frisius to the genus Methanosarcina as Methanosarcina frisia comb. nov. Int. J. Syst. Bacteriol. 39:91–92.

    Article  Google Scholar 

  • Blotevogel, K.-H., and A.J.L. Macario. 1989. Antigenic relationship of Methanococcus frisius. Syst. Appl. Microbiol. 11:148–150.

    Article  Google Scholar 

  • Bobik, T.A., M.I. Donnelly, K.L. Rinehart, Jr., and R.S. Wolfe. 1987. Structure of a methanofuran derivative found in cell extracts in Methanosarcina barkeri. Arch. Biochem. Biophys. 254:430–436.

    Article  PubMed  CAS  Google Scholar 

  • Bokranz, M., and A. Klein. 1987. Nucleotide sequence of the methyl coenzyme M reductase gene cluster from Methanosarcina barkeri. Nucleic Acids Res. 15:4350–4351.

    Article  PubMed  CAS  Google Scholar 

  • Boone, D.R., and R.A. Man. 1989. Methanogenic archaebacteria. In Bergey’s Manual of Systematic Bacteriology, Vol. 3, J.T. Staley, M.P. Bryant, N. Pfennig, and J.G. Holt (eds.), pp. 2173–2216. Williams and Wilkins, Baltimore.

    Google Scholar 

  • Boone, D.R., J.A.G.F. Menaia, J.E. Boone, and R.A. Mah. 1987. Effects of hydrogen pressure during growth and effects of pregrowth with hydrogen on acetate degradation by Methanosarcina species. Appl. Environ. Microbiol. 53:83–87.

    PubMed  CAS  Google Scholar 

  • Börner, G., M. Karrasch, and R.K. Thauer. 1989. Formylmethanofuran dehydrogenase activity in cell extracts of Methanobacterium thermoautotrophicum and of Methanosarcina barkeri. FEBS Lett. 244:21–25.

    Article  Google Scholar 

  • Börner, G., M. Karrasch, and R.K. Thauer. 1991. Molybdopterin adenine dinucleotide and molybdopterin hypoxanthine dinucleotide in formylmethanofuran dehydrogenase from Methanobacterium thermoautotrophicum (Marburg). FEBS Lett. 290:31–34.

    Article  PubMed  Google Scholar 

  • Bott, M., B. Eikmanns, and R.K. Thauer. 1986. Coupling of carbon monoxide oxidation to CO2 and H2 with the phosphorylation of ADP in acetate-grown Methanosarcina barkeri. Eur. J. Biochem. 159:393–398.

    Article  PubMed  CAS  Google Scholar 

  • Bott, M., and R.K. Thauer. 1989. Proton translocation coupled to the oxidation of carbon monoxide to carbon dioxide and hydrogen in Methanosarcina barkeri. Eur. J. Biochem. 179:469–472.

    Article  PubMed  CAS  Google Scholar 

  • Breitung, J., G. Börner, M. Karrrasch, A. Berkessel, and R.K. Thauer. 1990. N-Furfurylformamide as a pseudo-substrate for formylmethanofuran-converting enzymes from methanogenic bacteria. FEBS Lett. 268:257–260.

    Article  PubMed  CAS  Google Scholar 

  • Beitung, J., and R.K. Thauer. 1990. Formylmethanofuran:tetrahydromethanopterin formyltransferase from Methanosarcina barkeri: identification of N5-formyltetrahydro-methanopterin as the product. FEBS Lett. 275:226–231.

    Article  Google Scholar 

  • Bryant, M.P., and D.R. Boone. 1987. Emended description of strain MST (DSM 800T), the type strain of Methanosarcina barkeri. Inst. J. Syst. Bacteriol. 37:169–170.

    Article  Google Scholar 

  • Clarens, M., and R. Moletta. 1990. Kinetic studies of acetate fermentation by Methanosarcina sp. MSTA-1. Appl. Microbiol. Biotechnol. 33:239–244.

    Article  PubMed  CAS  Google Scholar 

  • Daniels, L., and J.G. Zeikus. 1978. One-carbon metabolism in methanogenic bacteria: analysis of short-term fixation products of 14CO2 and 14CH3OH incorporated into whole cells. J. Bacteriol. 136:75–84.

    PubMed  CAS  Google Scholar 

  • Deppenmeier, U., M. Blaut, A. Jussofie, and G. Gottschalk. 1988. A methyl-CoM methylreductase system from methanogenic bacterium strain Göl not requiring ATP for activity. FEBS Lett. 241:60–64.

    Article  PubMed  CAS  Google Scholar 

  • Deppenmeier, U., M. Blaut, and G. Gottschalk. 1989. Dependence on membrane components of methanogenesis from methyl-CoM with formaldehyde or molecular hydrogen as electron donors. Eur. J. Biochem. 186:317–323.

    Article  PubMed  CAS  Google Scholar 

  • Deppenmeier, U., M. Blaut, and G. Gottschalk. 1990a. Membrane-bound F420H2-dependent heterodisulfide reductase in methanogenic bacterium strain Göl and Methanolobus tindarius. FEBS Lett. 261:199–203.

    Article  CAS  Google Scholar 

  • Deppenmeier, U., M. Blaut, A. Mahlmann, and G. Gottschalk. 1990b. Reduced coenzyme F420:heterodisulfide oxidoreductase, a proton-translocating redox system in methanogenic bacteria. Proc. Natl. Acad. Sci USA 87:9449:9453.

    Article  PubMed  CAS  Google Scholar 

  • Deppenmeier, U., M. Blaut, and G. Gottschalk. 1991. H2:heterodisulfideoxidoreductase, a second energy-conserving system in the methanogenic strain Göl. Arch. Microbiol. 155:272–277.

    Article  CAS  Google Scholar 

  • Eikmanns, B., and R.K. Thauer. 1984. Catalysis of an isotopic exchange between CO2 and the carboxyl group of acetate by Methanosarcina barken grown on acetate. Arch. Microbiol. 138:365–370.

    Article  CAS  Google Scholar 

  • Enßle, M., G. Zirngibl, D. Linder, and R.K. Thauer. 1991. Coenzyme F420-dependent N5,N10-methylene-tetrahydromethanopterin dehydrogenase in methanol-grown Methanosarcina barkeri. Arch. Microbiol. 155:483–490.

    Article  Google Scholar 

  • Fauque, G., M. Teixeira, I. Moura, P.A. Lespinat, A.V. Xavier, D.V. DerVartanian, H.D. Peck, Jr., and J.G. Moura. 1984. Purification, characterization and redox properties of hydrogenase from Methanosarcina barkeri (DSM 800). Eur. J. Biochem. 142:21–28.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson, T.J., and R.A. Man. 1983. Effect of H2-CO2 on methanogenesis from acetate or methanol in Methanosarcina spp. Appl. Environ. Microbiol. 64:348–355.

    Google Scholar 

  • Fiebig, K., and B. Friedrich. 1989. Purification of the F420-reducing hydrogenase from Methanosarcina barkeri (strain Fusaro). Eur. J. Biochem. 184:79–88.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, R., and R.K. Thauer. 1988. Methane formation from acetyl phosphate in cell extracts of Methanosarcina barkeri. Dependence of the reaction on coenzyme A. FEBS Lett. 228:249–253.

    Article  CAS  Google Scholar 

  • Fischer, R., and R.K. Thauer. 1989. Methyltetrahydromethanopterin as an intermediate in methanogenesis from acetate in Methanosarcina barkeri. Arch. Microbiol. 151:45–465.

    Article  Google Scholar 

  • Fischer, R., and R.K. Thauer. 1990a. Methanogenesis from acetate in cell extracts of Methanosarcina barkeri: isotope exchange between carbon dioxide and the carbonyl group of acetyl-CoA, and the role of hydrogen. Arch. Microbiol. 153:156–162.

    Article  CAS  Google Scholar 

  • Fischer, R., and R.K. Thauer. 1990b. Ferredoxin-dependent methane formation from acetate in cell extracts of Methanosarcina barkeri (strain MS). FEBS Lett. 269:368–372.

    Article  PubMed  CAS  Google Scholar 

  • Fox, J.A., D.J. Livingston, W.H. Orme-Johnson, and C.T. Walsh. 1987. 8-Hydroxy-5-deazaflavin-reducing hydrogenase from Methanobacteriwn thermautotrophicum: 1. Purification and characterization. Biochemistry 26:4219–4227.

    Article  PubMed  CAS  Google Scholar 

  • Friedmann, H.C., A. Klein, and R.K. Thauer. 1990. Structure and function of the nickel porphinoid, coenzyme F430, and of its enzyme, methyl coenzyme reductase. FEMS Microbiol. Rev. 87:339–348.

    Article  CAS  Google Scholar 

  • Garcia. J.L. 1990. Taxonomy and ecology of methanogens. FEMS Microbiol. Rev. 87:297–308.

    Article  Google Scholar 

  • Gorris, L.G.M., and C. van der Drift. 1986. Methanogenic cofactors in pure cultures of methanogens in relation to substrate utilization. In Progress in Biotechnology, Vol. 2. H.C. Dubourguier, L. Montreuil, C. Romond, P. Sautière, and J. Guillaume (eds.), pp. 144–150. Elsevier, Amsterdam.

    Google Scholar 

  • Gottschalk, G., and M. Blaut. 1990. Generation of proton and sodium motive forces in methanogenic bacteria. Biochim. Biophys. Acta 1018:263–266.

    Article  CAS  Google Scholar 

  • Grahame, D.A. 1989. Different isozymes of methylcobalamin:2-mercaptoethanesulfonate methyltransferase predominate in methanol- versus acetate-grown Methanosarcina barkeri. J. Biol. Chem. 264:12890–12894.

    PubMed  CAS  Google Scholar 

  • Groenewegen, J. 1920. Mededelingen v.d. Burgert. Geneesk, Dienst in Ned. Indië 1:66.

    Google Scholar 

  • Haase, P., U. Deppenmeier, M. Blaut, and G. Gottschalk. 1992. Purification and characterization of F420H2-dehydrogenase from Methanolobus tindarius. Eur. J. Biochem. 203:527–531.

    Article  PubMed  CAS  Google Scholar 

  • Hartzeil, P.L., and R.S. Wolfe. 1986. Comparative studies of component C from the methylreductase system of different methanogens. Syst. Appl. Microbiol. 7:376–382.

    Article  Google Scholar 

  • Hatchikian, E.C., M. Bruschi, N. Forget, and M. Scandellari. 1982. Electron transport components from methanogenic bacteria: the ferredoxin from Methanosarcina barkeri (strain Fusaro). Biochem. Biophys. Res. Commun. 109:1316–1323.

    Article  PubMed  CAS  Google Scholar 

  • Hausinger, R.P., I. Moura, J.J.G. Moura, A.V. Xavier, M.H. Santos, J. LeGall, and J.B. Howard. 1982. Amino acid sequence of a 3Fe:3S ferredoxin from the “archaebacterium” Methanosarcina barkeri (DSM 800). J. Biol. Chem. 257:14192–14197.

    PubMed  CAS  Google Scholar 

  • Hedderich, R., A. Berkessel, and R.K. Thauer. 1990. Purification and properties of heterodisulfide reductase from Methanobacterium thermoautotrophicum (strain Marburg). Eur. J. Biochem. 193:255–261.

    Article  PubMed  CAS  Google Scholar 

  • Heine-Dobbernack, E., S.M. Schoberth, and H. Sahm. 1988. Relationship of intracellular coenzyme F420 content to growth and metabolic activity of Methanobacterium bryantii and Methanosarcina barkeri. Appl. Environ. Microbiol. 54:454–459.

    PubMed  CAS  Google Scholar 

  • Hippe, H., D. Caspari, K. Fiebig, and G. Gottschalk. 1979. Utilization of trimethylamine and other N-methyl compounds for growth and methane formation by Methanosarcina barkeri. Proc. Natl. Acad. Sci. USA 76:494–498.

    Article  PubMed  CAS  Google Scholar 

  • Höllriegl, V., P. Scherer, and P. Renz. 1983. Isolation and characterization of the Co-methyl and Co-aquo derivative of 5-hydroxybenzimidazolylcobamide (Factor III) from Methanosarcina barkeri grown on methanol. FEBS Lett. 151:156–158.

    Article  Google Scholar 

  • Hoppert, M. and F. Mayer. 1990. Electron microscopy of native and artificial methyReductase high-molecular-weight complexes in strain Göl and Methanococcus voltae. FEBS Lett. 267:33–37.

    Article  PubMed  CAS  Google Scholar 

  • Hutten, T.J., M.H. de Jong, B.P.H. Peeters, C. van der Drift, and G.D. Vogels. 1981. Coenzyme M derivatives and their effects on methane formation from carbon dioxide and methanol by cell extracts of Methanosarcina barkeri. J. Bacteriol. 145:27–34.

    PubMed  CAS  Google Scholar 

  • Jablonski, P.E., A.A. DiMarco, T.A. Bobik, M.C. Cabell, and J.G. Ferry. 1990. Protein content and enzyme activities in methanol- and acetate-grown Methanosarcina thermophila. J. Bacteriol. 172:1271–1275.

    PubMed  CAS  Google Scholar 

  • Jablonski, P.E., and J.G. Ferry, 1991. Purification and properties of methyl coenzyme M methylreductase from acetate-grown Methanosarcina thermophila. J. Bacteriol. 173:2481–2487.

    PubMed  CAS  Google Scholar 

  • Jain, M.K., L. Bhatnagar, and J.G. Zeikus. 1988. A taxonomic overview of methanogens. Indian J. Microbiol. 28:143–177.

    Google Scholar 

  • Jetten, M.S.M., A.J.M. Stams, and A.J.B. Zehnder. 1990. Acetate threshold values and acetate activating enzymes in methanogenic bacteria. FEMS Microbiol. Ecol. 73:339–344.

    Article  CAS  Google Scholar 

  • Jussofie, A. 1984. Cytochromuntersuchungen aus methanogenen und acetogenen Bakterien. Ph.D. Thesis. University of Göttingen.

    Google Scholar 

  • Jussofie, A., and G. Gottschalk. 1986. Further studies on the distribution of cytochromes in methanogenic bacteria. FEMS Microbiol. Lett. 37:15–18.

    Article  CAS  Google Scholar 

  • Kaesler, B., and P. Schönheit. 1989a. The role of sodium ions in methanogenesis. Formaldehyde oxidation to carbon dioxide and 2-hydrogen in methanogenic bacteria is coupled with primary electrogenic sodium translocation at a stoichiometry of 2–3 sodium/carbon dioxide. Eur. J. Biochem. 184:223–232.

    Article  PubMed  CAS  Google Scholar 

  • Kaesler, B., and P. Schönheit. 1989b. The sodium cycle in methanogenesis. Carbon dioxide reduction to the formaldehyde level in methanogenic bacteria is driven by a primary electrochemical potential of sodium generated by formaldehyde reduction to methane. Eur. J. Biochem. 186:309–316.

    Article  PubMed  CAS  Google Scholar 

  • Karrasch, M., M. Bott, and R.K. Thauer. 1989. Carbonic anhydrase activity in acetate grown Methanosarcina barkeri. Arch. Microbiol. 151:137–142.

    Article  CAS  Google Scholar 

  • Karrasch, M., G. Börner, M. Enßle, and R.K. Thauer. 1989. Formylmethanofuran dehydrogenase from methanogenic bacteria, a molybdoenzyme. FEBS Lett. 253:226–230.

    Article  PubMed  CAS  Google Scholar 

  • Karrasch, M., G. Börner, M. Enßle, and R.K. Thauer. 1990. The molybdoenzyme formylmethanofuran dehydrogenase from Methanosarcina barkeri contains a pterin cofactor. Eur. J. Biochem. 194:367–372.

    Article  PubMed  CAS  Google Scholar 

  • Karrasch, M., G. Börner., and R.K. Thauer. 1990. The molybdenum cofactors of formylmethanofuran dehydrogenase from Methanosarcina barkeri is a molybdopterin guanine dinucleotide. FEBS Lett. 274:48–52.

    Article  PubMed  CAS  Google Scholar 

  • Kell, D.B., and J.G. Morris. 1979. Oxidation and reduction potentials of coenzyme M (2-mercaptoethane sulfonate) at the mercury electrode. FEBS Lett. 108:481–484.

    Article  PubMed  CAS  Google Scholar 

  • Keltjens, J.T., J.A.M. Brugman, J.M.A. Kesseleer, B.W.J, te Brömmelstroet, C. Van der Drift, and G.D. Vogels. 1992. 5-Formyl-5,6,7,8-tetrahydromethanopterin is the intermediate in the process of methanogenesis in Methanosarcina barkeri. BioFactors 3:249–255.

    PubMed  CAS  Google Scholar 

  • Keltjens, J.T., B.W. te Brömmelstroet, S.W.M. Kengen, C. van der Drift, and G.D. Vogels. 1990. 5,6,7,8-tetrahydromethanopterin-dependentenzymes involved in methanogenesis. FEMS Microbiol. Rev. 87:327–332.

    Article  CAS  Google Scholar 

  • Keltjens, J.T., and C. van der Drift. 1986. Electron transfer reactions in methanogens. FEMS Microbiol. Rev. 39:259–303.

    Article  CAS  Google Scholar 

  • Kemner, J.M., J.A. Krzycki, R.C. Prince, and J.G. Zeikus. 1987. Spectroscopic and enzymic evidence for membrane-bound electron transport carriers and hydrogenase and their relation to cytochrome b function in Methanosarcina barkeri. FEMS Microbiol. Lett. 48:267–272.

    Article  CAS  Google Scholar 

  • Kenealy, W.R., and J.G. Zeikus. 1982. One-carbon metabolism in methanogens: evidence for synthesis of a two-carbon cellular intermediate and unification of catabolism and anabolism in Methanosarcina barkeri. J. Bacteriol. 151:932–941.

    PubMed  CAS  Google Scholar 

  • Kengen, S.W.M., P.J.H. Daas, E.F.G. Duits, J.T. Keltjens, C. van der Drift, and G.D. Vogels. 1992. Isolation of a 5-hydroxybenzimidazolyl cobamide-containing enzyme involved in the methyltetrahydromethanopterin:coenzyme M methytransferase reaction in Methanobacterium thermoautotrophicum. Biochim. Biophys. Acta 1118:249–260.

    Article  PubMed  CAS  Google Scholar 

  • Kiene, R.P., R.S. Oremland, A. Catena, L.G. Miller, and D.G. Capone. 1986. Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen. Appl. Environ. Microbiol. 52:1037–1045.

    PubMed  CAS  Google Scholar 

  • King, G.M. 1984. Utilization of hydrogen, acetate, and “non-competitive” substrates by methanogenic bacteria in marine sediments. Geomicrobiol. J. 3:275–280.

    Article  CAS  Google Scholar 

  • Klein, A., R. Allmansberger, M. Bokranz, S. Knaub, B. Müller, and E. Muth. 1988. Comparative analysis of genes encoding methyl coenzyme M reductase in methanogenic bacteria. Mol. Gen. Genet. 213:409–420.

    Article  PubMed  CAS  Google Scholar 

  • Kluyver, A.J., and C.B. van Niel. 1936. Prospects for a natural system of classification of bacteria. Zbl. Bakt. Parasitenk. Infektionskr. Hyg. Abt. 2 94:369–403.

    Google Scholar 

  • König, H., and K.O. Stetter. 1982. Isolation and characterization of Methanolobus tindarius, sp. nov., a coccoid methanogen growing only on methanol and methylamines. Zbl. Bakt. Hyg. I Abt. Orig. C 3:478–490.

    Google Scholar 

  • Kräutler, B. 1987. The porphinoids- versatile biological catalyst molecules. Chimia 41:277–292.

    Google Scholar 

  • Kräutler, B. 1990. Chemistry of methylcorrinoids related to their roles in bacterial C1 metabolism. FEMS Microbiol. Rev. 87:349–354.

    Article  Google Scholar 

  • Krzycki, J.A., L.J. Lehman, and J.G. Zeikus. 1985. Acetate catabolism by Methanosarcina barkeri: evidence for involvement of carbon monoxide dehydrogenase, methyl coenzyme M, and methylreductase. J. Bacteriol. 163:1000–1006.

    PubMed  CAS  Google Scholar 

  • Krzycki, J.A., J.B. Morgan, R. Conrad, and J.G. Zeikus. 1987. Hydrogen metabolism during methanogenesis from acetate by Methanosarcina barkeri. FEMS Microbiol. Lett. 40:193–198.

    Article  CAS  Google Scholar 

  • Krzycki, J. A., and R.C. Prince. 1990. EPR observation of carbon monoxide dehydrogenase, methylreductase and corrinoid in intact Methanosarcina barkeri during methanogenesis from acetate. Biochim. Biophys. Acta 1015:53–60.

    Article  CAS  Google Scholar 

  • Krzycki, J.A., R.H. Wolkin, and J.G. Zeikus. 1982. Comparison of unitrophic and mixotrophic substrate metabolism by an acetate-adapted strain of Methanosarcina barkeri. J. Bacteriol. 149:247–254.

    PubMed  CAS  Google Scholar 

  • Krzycki, J.A., and J.G. Zeikus. 1984. Acetate catabolism by Methanosarcina barkeri: hydrogen-dependent methane production from acetate by a soluble cell protein fraction. FEMS Microbiol. Lett. 25:27–32.

    Article  CAS  Google Scholar 

  • Kühn, W., K. Fiebig, H. Hippe, R.A. Mah, B.A. Huser, and G. Gottschalk. 1983. Distribution of cytochromes in methanogenic bacteria. FEMS Microbiol. Lett. 20:407–410.

    Article  Google Scholar 

  • Kühn, W., and G. Gottschalk, 1983. Characterization of the cytochromes occurring in Methanosarcina species. Eur. J. Biochem. 135:89–94.

    Article  PubMed  Google Scholar 

  • Lexa, D., and Saveant. 1983. The electrochemistry of vitamin B12. Ace. Chem. Res. 16:235–243.

    Article  CAS  Google Scholar 

  • Liu, Y., D.R. Boone, and C. Choy. 1990. Methanohalophilus oregonense sp. nov., a methylotrophic methanogen from an alkaline, saline aquifer. Int. J. Syst. Bacteriol. 40:111–116.

    Article  Google Scholar 

  • Liu, Y., D.R. Boone, R. Sleat, and R.A. Mah. 1985. Methanosarcina mazei LYC, a new methanogenic isolate which produces a disaggregating enzyme. Appl. Environ. Microbiol. 49:608–613.

    PubMed  CAS  Google Scholar 

  • Livingston, D.J., J.A. Fox, W.H. Orme-Johnson, and C.T. Walsh. 1987. 8-Hydroxy-5-deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum: 2. Kinetic and hydrogen-transfer studies. Biochemistry 26:4228–4236.

    Article  PubMed  CAS  Google Scholar 

  • Lovley, D.R., and J.G. Ferry. 1985. Production and consumption of H2 during growth of Methanosarcina spp. on acetate. Appl. Environ. Microbiol. 49:247–247.

    PubMed  CAS  Google Scholar 

  • Lundie, L.L., Jr., and J.G. Ferry. 1989. Activation of acetate by Methanosarcina thermophila. Purification and characterization of phosphotransacetylase. J. Biol. Chem. 264:18392–18396.

    PubMed  CAS  Google Scholar 

  • Ma, K., and R.K. Thauer. 1990. N5,N10-methylenetetrahydromethanopterin reductase from Methanosarcina barkeri. FEMS Microbiol. Lett. 70:119–124.

    CAS  Google Scholar 

  • Mah, R.A. 1980. Isolation and characterization of Methanococcus mazei. Curr. Microbiol. 3:321–326.

    Article  Google Scholar 

  • Mah, R.A., and D.A. Kühn. 1984. Transfer of the type species of the genus Methanococcus to the genus Methanosarcina, naming it Methanosarcina mazei (Barker 1936) comb. nov. et emend, and conservation of the genus Methanococcus (approved lists 1980) with Methanococcus vannielii (approved lists 1980) as the type species. Int. J. Syst. Bacteriol. 34:263–265.

    Article  Google Scholar 

  • Mah, R.A., M.R. Smith, T. Ferguson, and S. Zinder. 1981. Methanogenesis from H2-CO2, methanol and acetate by Methanosarcina . In Microbial Growth on C 1 Compounds, H. Dalton (ed.), pp. 131–142. Heyden and Son, London.

    Google Scholar 

  • Mathrani, I.M., D.R. Boone, R.A. Mah, G.E. Fox, and P.P. Lau. 1988. Methanohalophilus zhilinae, sp. nov., an alkaliphilic, halophilic, methylotrophic, methanogen. Int. J. Syst. Bacteriol. 38:139–142.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, R.G., R.V. Banerjee, and S.W. Ragsdale. 1990. Cobamide-dependent methyl transferases. BioFactors 2:147–152.

    PubMed  CAS  Google Scholar 

  • Mayer, F., M. Rohde, M. Salzmann, A. Jussofie, and G. Gottschalk, 1988. The methanoreductosome: a high-molecular-weight enzyme complex in the methanogenic strain Göl that contains components of the methylreductase system. J. Bacteriol. 170:1438–1444.

    PubMed  CAS  Google Scholar 

  • Miller, T.L., and M.J. Wolin. 1983. Oxidation of hydrogen and reduction of methanol to methane is the sole energy source for a methanogen isolated from human feces. J. Bacteriol. 153:1051–1055.

    PubMed  CAS  Google Scholar 

  • Miller, T.L., and M.J. Wolin. 1985. Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Arch. Microbiol. 141:116–122.

    Article  PubMed  CAS  Google Scholar 

  • Min, H., and S.H. Zinder. 1989. Kinetics of acetate utilization by two thermophilic acetotrophic methanogens: Methanosarcina sp. strain CALS-1 and Methanothrix sp. strain CALS-1. Appl. Environ. Microbiol. 55:488–491.

    PubMed  CAS  Google Scholar 

  • Mortenson, L.E., and Thornley, 1979. Structure and function of the nitrogenase. Annu. Rev. Biochem. 48:387–418.

    Article  PubMed  CAS  Google Scholar 

  • Moura, I., J.J.G. Moura, B.H. Huynh, H. Santos, J. LeGall, and A.V. Xavier. 1982. Ferredoxin from Methanosarcina barkeri: Evidence for the presence of a three-iron centre. Eur. J. Biochem. 126:95–98.

    Article  PubMed  CAS  Google Scholar 

  • Müller, V., M. Blaut, and G. Gottschalk. 1986. Utilization of methanol plus hydrogen by Methanosarcina barkeri for methanogenesis and growth. Appl. Environ. Microbiol. 52:269–274.

    PubMed  Google Scholar 

  • Müller, V., M. Blaut, and G. Gottschalk. 1987a. Oxidation of trimethylamine to the level of formaldehyde by Methanosarcina barkeri is dependent on the proton-motive force. FEMS Microbiol. Lett. 43:183–186.

    Article  Google Scholar 

  • Müller, V., M. Blaut, and G. Gottschalk. 1987b. Generation of a transmembrane gradient of Na+ in Methanosarcina barkeri. Eur. J. Biochem. 162:461–466.

    Article  PubMed  Google Scholar 

  • Müller, V., M. Blaut, G. Gottschalk, 1988. The transmembrane electrochemical gradient of sodium as driving force for methanol oxidation in Methanosarcina barkeri. Eur. J. Biochem. 172:601–606.

    Article  PubMed  Google Scholar 

  • Müller, V., M. Blaut, R. Heise, C. Winner, and G. Gottschalk. 1990. Sodiumbioenergetics in methanogens and acetogens. FEMS Microbiol. Rev. 87:373–376.

    Article  Google Scholar 

  • Müller, V., G. Kozianowski, M. Blaut, and G. Gottschalk, 1987. Methanogenesis from trimethylamine + hydrogen by Methanosarcina barkeri is coupled to ATP formation by a chemiosmotic mechanism. Biochim. Biophys. Acta 892:207–212.

    Article  Google Scholar 

  • Müller, V., C. Winner, and G. Gottschalk, 1988. Electron-transport-driven sodium extrusion during methanogenesis from formaldehyde and molecular hydrogen by Methanosarcina barken. Eur. J. Biochem. 178:519–525.

    Article  PubMed  Google Scholar 

  • Nakatsugawa, N., and J.P. Horikoshi. 1989a. Alkalophilic, methanogenic bacteria (Methanosarcina alkaliphilum) and fermentation method for the fast production of methane. Research Development Corporation of Japan, No. 33134 EP.

    Google Scholar 

  • Nakatsugawa, N., and J.P. Horikoshi. 1989b. Extremely halophilic methanogenic archae-bacteria and process for the production of methane. Research Development Corporation of Japan, No. 313900 EP.

    Google Scholar 

  • Naumann, E., K. Fahlbusch, and G. Gottschalk. 1984. Presence of a trimethylamine:HS-coenzyme M methyltransferase in Methanosarcina barkeri. Arch. Microbiol. 138:79–83.

    Article  CAS  Google Scholar 

  • Nelson, M.J.K., and J.G. Ferry. 1984. Carbon monoxide-dependent methylcoenzyme M methylreductase in acetotrophic Methanosarcina spp. J. Bacteriol. 160:526–532.

    PubMed  CAS  Google Scholar 

  • Ni S., and D.R. Boone. 1991. Isolation and characterization of a dimethyl sulfide-degrading methanogen. Methanolobus siciliae HI350, from an oil well. Characterization of M. siciliae T4/MT, and emendation of M. siciliae. Int. J. Syst. Bacteriol. 41:410–416.

    Article  CAS  Google Scholar 

  • O’Brien, J.M., R.H. Wolkin, T.T. Mönch, J.B. Morgan, and J.G. Zeikus. 1984. Association of hydrogen metabolism with unitrophic or mixotrophic growth of Methanosarcina barkeri on carbon monoxide. J. Bacteriol. 158:373–375.

    PubMed  Google Scholar 

  • Obraztsova, A.Y., O.V. Shipin, L.V. Bezrukova, and S.S. Belyaev. 1987. Properties the coccoid methylotrophic methanogen Methanococcoides euhalobius sp.nov. Microbiology (Eng. trans.) 56:523–527.

    Google Scholar 

  • Ollivier, B., A. Lombardo, and J.L. Garcia. 1984. Isolation and characterization of a new thermophilic Methanosarcina strain MP. Ann. Inst. Pasteur Microbiol. 135:187–198.

    Article  Google Scholar 

  • Oremland, R.S., R.P. Kiene, I. Mathrani, M.J. Whiticar, and D.R. Boone. 1989. Description of an estuarine methylotrophic methanogen which grows on dimethyl sulfide. App. Environ, Microbiol. 55:994–1002.

    CAS  Google Scholar 

  • Paterek, J.R., and P.H. Smith. 1985. Isolation and characterization of a halophilic methanogen from Great Salt Lake. Appl. Environ. Microbiol. 50:877–881.

    PubMed  CAS  Google Scholar 

  • Paterek, J.R., and P.H. Smith. 1988. Methanohalophilus mahii, sp. nov., a methylotrophic halophilic methanogen. Int. J. Syst. Bacteriol. 38:122–123.

    Article  Google Scholar 

  • Peck, M.W. 1989. Changes in concentrations of coenzyme F420 analogs during batch growth of Methanosarcina barkeri and Methanosarcina mazei. Appl. Environ. Microbiol. 55:940–945.

    PubMed  CAS  Google Scholar 

  • Peinemann, S., V. Müller, M. Blaut, and G. Gottschalk, 1988. Bioenergetics of methanogenesis from acetate by Methanosarcina barkeri. J. Bacteriol. 170:1369–1372.

    PubMed  CAS  Google Scholar 

  • Pol, A., C. van der Drift, and G.D. Vogels. 1982. Corrinoids from Methanosarcina barkeri: structure of the α-ligand. Biochem. Biophys. Res. Commun. 108:731–737.

    Article  PubMed  CAS  Google Scholar 

  • Rospert, S., R. Böcher, S.P.J. Albracht, and R.K. Thauer. 1991. Methylcoenzyme M reductase preparations with high specific activity from H2-preincubated cells of Methanobacterium thermoautotrophicum. FEBS Lett. 291:371–375.

    Article  PubMed  CAS  Google Scholar 

  • Rouvière, P.E., C.H. Kuhner, and R.S. Wolfe. 1990. Biochemistry of the methylcoenzyme M methylreductase system, p. 259–267. In J.P. Bélaich (ed.), Microbiology and biochemistry of strict anaerobes involved in interspecies hydrogen transfer. Plenum Press, New York.

    Google Scholar 

  • Rouvière, P.E., and R.S. Wolfe. 1987. Use of subunits of the methylreductase protein for taxonomy of methanogenic bacteria. Arch. Microbiol. 148:253–259.

    Article  Google Scholar 

  • Rouvière, P.E., and Wolfe, R.S. 1988. Novel biochemistry of methanogenesis. J. Biol. Chem. 263:7913–7916.

    PubMed  Google Scholar 

  • Schnellen, C.G.T.P. 1946. Onderzoekingen over de methaangisting. Ph.D. thesis, Delft University of Technology.

    Google Scholar 

  • Schwörer, B., and R.K. Thauer. 1991. Activities of formylmethanofuran dehydrogenase, methylenetetrahydromethanopterin dehydrogenase, methylenetetrahydromethanopterin reductase, and heterodisulfide reductase in methanogenic bacteria. Arch. Microbiol. 155:459–465.

    Article  Google Scholar 

  • Shapiro, S. 1982. Do corrinoids function in the methanogenic dissimilation of C1 compounds by Methanosarcina barkeri? Can. J. Microbiol. 28:629–635.

    Article  CAS  Google Scholar 

  • Shapiro, S., and R.S. Wolfe. 1980. Methy 1-coenzyme M, an intermediate in methanogenic dissimilation of C1 compounds by Methanosarcina barkeri. J. Bacteriol. 141:728–734.

    PubMed  CAS  Google Scholar 

  • Smith, M.R., and R.A. Man. 1978. Growth and methanogenesis by Methanosarcina barkeri strain 227 on acetate and methanol. Appl. Environ. Microbiol. 36:870–879.

    PubMed  CAS  Google Scholar 

  • Sowers, K.R., and J.G. Ferry. 1983. Isolation and characterization of a methylotrophic marine methanogen, Methanococcoides methylutens gen. nov., sp. nov. Appl. Environ. Microbiol. 45:684–690.

    PubMed  CAS  Google Scholar 

  • Sowers, K.R., S.F. Baron, and J.G. Ferry. 1984. Methanosarcina acetivorans sp.nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl. Environ. Microbiol. 47:971–978.

    PubMed  CAS  Google Scholar 

  • Sowers, K.R., J.L. Johnson, and J.G. Ferry. 1984. Phylogenetic relationships among the methylotrophic methane-producing bacteria and emendation of the family Methanosarcinaceae. Int. J. Syst. Bacteriol. 34:444–450.

    Article  CAS  Google Scholar 

  • Stetter, K.O. 1989. Genus Methanolobus. In Bergey’s Manual of Systematic Bacteriology, Vol. 3, J.T. Staley, M.P. Bryant, N. Pfennig, and J.G. Holt (eds.), pp. 2205–2207. Williams and Wilkins, Baltimore.

    Google Scholar 

  • Stupperich, E., and B. Kräutler. 1988. Pseudo vitamin B12 or 5-hydroxybenzimidazolyl-cobamide are the corrinoids found in methanogenic bacteria. Arch. Microbiol. 149:268–271.

    Article  CAS  Google Scholar 

  • Taylor, C.D., and R.S. Wolfe. 1974. Structure and methylation of coenzyme M (HSCH2CH2SO3). J. Biol. Chem. 249:4879–4885.

    PubMed  CAS  Google Scholar 

  • te Brömmelstroet, B.W., C.M.H. Hensgens, W.J. Geerts, J.T. Keltjens, G. van der Drift, and G.D. Vogels. 1990. Purification and properties of 5,10-methenyltetrahydromethanopterin cyclohydrolase from Methanosarcina barkeri. J. Bacteriol. 172:564–571.

    Google Scholar 

  • te Brömmelstroet, B.W., W.G. Geerts, J.T. Keltjens, C. van der Drift, and G.D. Vogels. 1991. Purification and properties of 5,10-methylenetetrahydromethanopterin dehydrogenase and 5,10-methylenetetrahydromethanopterin reductase, two coenzyme F420-dependent enzymes, from Methanosarcina barkeri. Biochim. Biophys. Acta 1079:293–302.

    Article  Google Scholar 

  • Terlesky, K.C., and J.G. Ferry. 1988a. Ferredoxin requirement for electron transport from the carbon monoxide dehydrogenase complex to a membrane bound hydrogenase in acetate-grown Methanosarcina thermophila. J. Biol. Chem. 263:4075–4079.

    PubMed  CAS  Google Scholar 

  • Terlesky, K.C., and J.G. Ferry. 1988b. Purification and characterization of a ferredoxin from acetate-grown Methanosarcina thermophila. J. Biol. Chem. 263:4080–4082.

    PubMed  CAS  Google Scholar 

  • Terlesky, K.C., M.J.K. Nelson, and J.G. Ferry. 1986. Isolation of an enzyme complex with carbon monoxide dehydrogenase activity containing corrinoid and nickel from acetate-grown Methanosarcina thermophila. J. Bacteriol. 168:1053–1058.

    PubMed  CAS  Google Scholar 

  • Thauer, R.K. 1990. Energy metabolism of methanogenic bacteria. Biochim. Biophys. Acta 1018:256–259.

    Article  CAS  Google Scholar 

  • Thomas, I., H.C. Dubourguier, G. Prensier, P. Debeire, and G. Albagnac. 1987. Purification of component C from Methanosarcina mazei and immunolocalization in Methanosarcinaceae. Arch. Microbiol. 148:193–201.

    Article  CAS  Google Scholar 

  • Touzel, J.P. and G. Albagnac. 1984. Acetoclastic methanogens in anaerobic digestors, p. 35–39. In A.A. Antonopoulos (ed.), Proceedings of the 1st symposium on advances in processing municipal waste for fuel and chemicals, Minneapolis 15–17 August 1984.

    Google Scholar 

  • Touzel, J.P., D. Petroff, and G. Albagnac. 1985. Isolation and characterization of a new thermophilic Methanosarcina, the strain CHTI-55. Syst. Appl. Microbiol. 6:66–71.

    Article  CAS  Google Scholar 

  • VanBeelen, P., J.F.A. Labro, J.T. Keltjens, W.J. Geerts, G.D. Vogels, W.H. Laarhoven, W. Guijt, and C.A.G. Haasnoot, 1984. Derivatives of methanopterin, a coenzyme involved in methanogenesis. Eur. J. Biochem. 139:359–365.

    Article  CAS  Google Scholar 

  • Van der Meijden, P., H.J. Heythuysen, A. Pouwels, C. van der Drift, and G.D. Vogels. 1983. Methyltransferases involved in the methanol conversion by Methanosarcina barkeri. Arch. Microbiol. 134:238–242.

    Article  PubMed  Google Scholar 

  • Van der Meijden, P., H.J. Heythuysen, H.T. Sliepenbeek, F.P. Houwen, C. van der Drift, and G.D. Vogels. 1983. Activation and inactivation of methanol:2-mercaptoethanesulfonic acid methytransferase from Methanosarcina barkeri. J. Bacteriol. 153:6–11.

    PubMed  Google Scholar 

  • Van der Meijden, P., L.P. Jansen, C. van der Drift, and G.D. Vogels. 1983. Involvement of corrinoids in the methylation of coenzyme M (2-mercaptoethanesulfonic acid) by methanol and enzymes from Methanosarcina barkeri. FEMS Microbiol. Lett. 19:247–251.

    Article  Google Scholar 

  • Van der Meijden, P., B.W. te Brömmelstroet, CM. Poirot, C. van der Drift, and G.D. Vogels. 1984. Purification and properties of methanol:5-hydroxybenzimidazolylcobamide methyltransferase from Methanosarcina barkeri. J. Bacteriol. 160:629–639.

    PubMed  Google Scholar 

  • Van der Meijden, P., C. van der Lest, C. van der Drift, and G.D. Vogels. 1984. Reductive activation of methanol:5-hydroxybenzimidazolylcobamide methyltransferase of Methanosarcina barkeri. Biochem. Biophys. Res. Commun. 118:760–766.

    Article  PubMed  Google Scholar 

  • Van de Wijngaard, W.M.H., J. Creemers, G.D. Vogels, and C. van der Drift. 1990. Methanogenic pathways in Methanosphaera stadtmanae. FEMS Microbiol. Lett. 80:207–212.

    Article  Google Scholar 

  • Van de Wijngaard, W.M.H., R.L. Lugtigheid, and C. van der Drift. 1990. Reductive activation of the corrinoid-containing enzyme involved in the methyl group transfer between methyltetrahydromethanopterin and coenzyme M in Methanosarcina barkeri. Antonie v. Leeuwenhoek 60:1–6.

    Article  Google Scholar 

  • Van de Wijngaard, W.M.H., C. van der Drift, and G.D. Vogels. 1988. Involvement of a corrinoid in methanogenesis from acetate in Methanosarcina barkeri. FEMS Microbiol. Lett. 52:165–171.

    Article  Google Scholar 

  • Wagman, D.D., W.H. Evans, V.B. Parker, R.H. Schumm, S.M. Bailey, I. Halow, K.L. Churney, and R.L. Nuttall. 1983. Selected values of chemical thermodynamic properties. In CRC Handbook of Chemistry and Physics, R.C. Weast and M.J. Astle (eds.), pp. D52–D92. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Weil, C.F., B.A. Sherf, and J.N. Reeve. 1989. A comparison of the methyl reductase genes and gene products. Can. J. Microbiol. 35:101–108.

    Article  PubMed  CAS  Google Scholar 

  • Westermann, P., B.K. Ahring, and R.A. Mah. 1989. Threshold acetate concentrations for acetate catabolism by aceticlastic methanogenic bacteria. Appl. Environ. Microbiol. 55:514–515.

    PubMed  CAS  Google Scholar 

  • White, R.H. 1988. Structural diversity among methanofurans from different methanogenic bacteria. J. Bacteriol. 170:4594–4597.

    PubMed  CAS  Google Scholar 

  • Whitman, W.B. 1985. Methanogenic bacteria. In Bacteria- a Treatise on Structure and Function, Vol. VIII, Archaebacteria, R.S. Wolfe and CR. Woese (eds.), pp. 3–83. Academic Press, Orlando, FL.

    Google Scholar 

  • Winner, C., and G. Gottschalk. 1989. Hydrogen and carbon dioxide production from methanol or formaldehyde by the methanogenic bacterium strain Göl treated with 2-bromoethanesulfonic acid. FEMS Microbiol. Lett. 65:259–264.

    CAS  Google Scholar 

  • Yu, I.K., and F. Kawamura. 1987. Halomethanococcus doii gen. nov. spec, nov.: an obligately halophilic methanogenic bacterium from solar salt ponds. J. Gen. App. Microbiol. 33:303–310.

    Article  CAS  Google Scholar 

  • Zeikus, J.G. 1983. Metabolism of one-carbon compounds by chemotrophic anaerobes Adv. Microbial Physiol. 25:219–299.

    Google Scholar 

  • Zhilina, T.N. 1983. New Obligate halophilic methane-producing bacterium. Mikrobiologiya (English Translation) 52:290–297.

    Google Scholar 

  • Zhilina, T.N. and G. A. Zavarzin. 1987a. Methanosarcina vacuolata sp.nov., a vacuolated Methanosarcina. Int. J. Syst. Bacteriol. 37:281–283.

    Article  CAS  Google Scholar 

  • Zhilina, T.N., and G.A. Zavarzin. 1987b. Methanohalobiwn evestigatus n. gen., n. sp., the extremely halophilic methanogenic Archaebacterium. Dokl. Akad. Nauk. SSSR 293:464–468.

    CAS  Google Scholar 

  • Zinder, S.H. 1990. Conversion of acetic acid to methane by thermophiles. FEMS Microbiol. Rev. 75:125–138.

    Article  CAS  Google Scholar 

  • Zinder, S.H., T. Anguish, and S.C. Card well. 1984. Effects of temperature on methanogenesis in a thermophilic anaerobic digestor. Appl. Environ. Microbiol. 47:808–813.

    PubMed  CAS  Google Scholar 

  • Zinder, S.H., and A.F. Elias. 1985. Growth substrate effects on acetate and methanol catabolism in Methanosarcina sp. strain TM-1. J. Bacteriol. 163:317–323.

    PubMed  CAS  Google Scholar 

  • Zinder, S.H., and R.A. Mah. 1979. Isolation and characterization of a thermophilic strain of Methanosarcina unable to use H2-CO2. Appl. Environ. Microbiol. 38:996–1008.

    PubMed  CAS  Google Scholar 

  • Zinder, S.H., K.R. Sowers, and J.G. Ferry. 1985. Methanosarcina thermophila sp. nov., a thermophilic acetotrophic methane-producing bacterium. Int. J. System. Bacteriol. 35, 522–523.

    Article  Google Scholar 

  • Zydowsky, L.D., T.M. Zydowsky, E.S. Haas, J.W. Brown, J.N. Reeve, and H.G. Floss. 1987. Stereochemical course of methyl transfer from methanol to methyl coenzyme M in cell-free extracts of Methanosarcina barken. J. Am. Chem. Soc. 109:7922–7923.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Keltjens, J.T., Vogels, G.D. (1993). Conversion of Methanol and Methylamines to Methane and Carbon Dioxide. In: Ferry, J.G. (eds) Methanogenesis. Chapman & Hall Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2391-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2391-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6013-1

  • Online ISBN: 978-1-4615-2391-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics