Mites pp 252-281 | Cite as

Adaptation and Transition into Parasitism from Commensalism: A Phoretic Model

  • Marilyn A. Houck


A parasite is “any organism that grows, feeds and is sheltered on or in a different organism while contributing nothing to the survival of its host” (The American Heritage Dictionary of the English Language). The etymology of the word has its origin in the Greek word parasitos, “fellow guest.” Parasitism is an important ecological and evolutionary role assumed by a variety of animals, and it has been suggested that parasitic insects comprise as many as half of all animals living on earth today (Price 1980). While a comparable projection is not yet available for mites, it is clear that the Acari have been particularly prominent in the exploitation of this mode of existence, both as ectoparasites and (to a lesser extent) as endoparasites (e.g. Pneumocoptes = lung parasites of the rodents Peromyscus, Onychomys, and Cynomys; Baker 1951).


Scale Insect Dispersal Stage Mortality Curve Feather Mite Phoretic Mite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, E. W. 1951. Pneumocoptes, a new genus of lung-inhabiting mite from rodents (Acarina: Epidermoptidae). J. Parasitol. 37:583–586.PubMedCrossRefGoogle Scholar
  2. Barker, P. S. 1982. Control of a mite Lepidoglyphus destructor, including hypopi, in wheat with carbon disulfide. J. Econ. Entomol. 75:426–439.Google Scholar
  3. Berenbaum, M. R. 1983. Coumarins and caterpillars: a case of coevolution. Evolution 37:163–179.CrossRefGoogle Scholar
  4. Binns, E. S. 1982. Phoresy as migration, some functional aspects of phoresy in mites. Biol. Rev. 57:571–620.CrossRefGoogle Scholar
  5. Boczek, J., C. Jura and A. Krzysztofowicz. 1969. The comparison of the structure of the internal organs of post-embryonic stages of Acarus farris (Oud.) with special reference to the hypopus. In: Proc. 2nd Int. Congr. Acarol. (G. O. Evans ed.). Sutton Vonington, England, 1967. Akadémiai Kaidó, Budapest. Pp. 241–248.Google Scholar
  6. Brooks, D. R. 1979. Testing the context and extent of host-parasite coevolution. Syst. Zool. 28:299–307.CrossRefGoogle Scholar
  7. Carey, J. R., P. Liedo, D. Orozco and J. W. Vaupel. 1992. Slowing of mortality rates at older ages in large medfly cohorts. Science 258:457–461.PubMedCrossRefGoogle Scholar
  8. Curtsinger, J. W., H. H. Fukui, D. R. Townsend and J. W. Vaupel. 1992. Demography of genotypes: failure of the limited life-span paradigm in Drosophila melanogaster. Science 258:461–463.PubMedCrossRefGoogle Scholar
  9. Cutcher, J. J. and J. P. Woodring. 1969. Environmental regulation of hypopal apolysis of the mite, Caloglyphus boharti. J. Insect Physiol. 15:2045–2057.CrossRefGoogle Scholar
  10. Deevey, E. S., Jr. 1947. Life tables for natural populations of animals. Q. Rev. Biol. 22:283–314.PubMedCrossRefGoogle Scholar
  11. Ehrlich, P. R. and P. H. Raven. 1964. Butterflies and plants: a study in coevolution. Evolution 18:586–608.CrossRefGoogle Scholar
  12. Evans, G. O., J. G. Sheals and D. MacFarland. 1961. The Terrestrial Acari of the British Isles: An Introduction to Their Morphology, Biology and Classification, Vol. 1. Brit. Mus. (Nat. Hist.), London. 219 pp.Google Scholar
  13. Ewing, H. E. 1912. The origin and significance of parasitism in the Acarina. Trans. Acad. Sci. St. Louis. 21:1–70.Google Scholar
  14. Ewing, H. E. 1933. New genera and species of parasitic mites of the superfamily Parasitoidea. Proc. US Nat. Mus. 82:1–14.Google Scholar
  15. Fain, A. 1968. Etude de la variabilité de Sarcoptes scabiei avec une revision des Sarcoptidae. Acta Zool. Pathol. Antverp. 56:73–82.Google Scholar
  16. Fain, A. 1969. Adaptation to parasitism in mites. Acarologia 11:429–449.PubMedGoogle Scholar
  17. Fain, A. 1971. Evolution de certains groupes d’hypopes en fonction du parasitisme (Acarina: Sarcoptiformes). Acarologia 13:171–175.Google Scholar
  18. Fain, A. and F. S. Lukoschus. 1977. New endofollicular or subcutaneous hypopi from mammals (Acari: Astigmata). Acarologia 19:484–493.Google Scholar
  19. Fain, A. and J. R. Philips. 1981. Astigmatic mites from nests of birds of prey in USA. VI. The adult froms of Echimyopus orphanus Fain and Philips, 1977 and Dermacarus pilitarsus Fain and Philips, 1977. Int. J. Acarol. 7:235–237.CrossRefGoogle Scholar
  20. Fain, A., D. P. Britt and D. H. Molyneux. 1980. Myianoetus copromyzae sp. nov. (Acari, Astigmata, Anoetidae) phoretic on Copromyza atra (Meigen 1830) in Scotland. J. Nat. Hist. 14:401–403.CrossRefGoogle Scholar
  21. Farish, D. J. and Axtell, R. C. 1971. Phoresy redefined and examined in Macrocheles muscaedomesticae (Acarina: Macrochelidae). Acarologia 13:16–29.Google Scholar
  22. Fashing, N. J. 1976. The resistant tritonymphal instar and its implications in the population dynamics of Naiadacarus arboricola Fashing (Acarina: Acaridae). Acarologia 18:704–714.Google Scholar
  23. Fashing, N. J. and L. L. Wiseman. 1980. Algophagus pennsylvanicus-a new species of Hyadesidae from water-filled treeholes. Int. J. Acarol. 6:79–84.CrossRefGoogle Scholar
  24. Feeny, P. P. 1976. Plant apparency and chemical defense. In: Recent Advances in Phytochemistry: Biochemical interactions Between Plants and Insects, Vol. 10 (J. Wallace and R. Mansell eds.). Plenum Press, NY. Pp. 1–40.CrossRefGoogle Scholar
  25. Gerson, U. 1967. Observations on Hemisarcoptes coccophagus Meyer (Astigmata: Hemisarcoptidae), with a new synonym. Acarologia 9:623–638.Google Scholar
  26. Gerson, U. and R. Schneider. 1982. The hypopus of Hemisarcoptes coccophagus Meyer (Acari: Astigmata: Hemisarcoptidae). Acarologia 23:171–76.Google Scholar
  27. Gerson, U., B. M. OConnor and M. A. Houck. 1990. Acari. In: Armored Scale Insects, Their Biology, Natural Enemies, and Control (D. Rosen ed.). Elsevier, Amsterdam. Pp. 77–97.Google Scholar
  28. Gordon, R. D. 1985. The Coccinellidae (Coleoptera) of America north of Mexico. J. NY Entomol. Soc. 93:1–912.Google Scholar
  29. Holmes, J. C. 1973. Site selection by parasitic helminths: interspecific interactions, site segregation, and their importance to the development of helminth communities. Can. J. Zool. 51:333–347.PubMedCrossRefGoogle Scholar
  30. Houck, M. A. 1989. Isozyme analysis of the mite Hemisarcoptes and its beetle host. Entomol. Exp. Appl. 52:167–172.CrossRefGoogle Scholar
  31. Houck, M. A. 1992. Morphological variation in an ectoparasite: partitioning ecological and evolutionary influences. In: Ordinations in the Study of Morphology, Evolution, and Systematics of Insects: Applications and Quantitative Genetic Rationales (J. T. Sorensen and R. Foottit eds.). Elsevier, Amsterdam. Pp. 277–308.Google Scholar
  32. Houck, M. A. and A. C Cohen. Ms. Transition from a free-living life form to parasitism via phoresy: experimental evidence from the mite Hemisarcoptes.Google Scholar
  33. Houck, M. A. and V. Lindley. 1993. A microwave technique for microscopical studies involving arthropods. Am. Entomol. 39:117–119.Google Scholar
  34. Houck, M. A. and B. M. OConnor. 1990. Ontogeny and life history of Hemisarcoptes cooremani (Acari: Hemisarcoptidae). Ann. Entomol. Soc. Am. 83:161–205.Google Scholar
  35. Houck, M. A. and B. M. OConnor. 1991. Ecological and Evolutionary Significance of Phoresy in the Astigmata. Annu. Rev. Entomol. 36:611–636.CrossRefGoogle Scholar
  36. Hughes, A. M. 1976. The Mites of Stored Food and Houses. Min. Agric. Fisheries Food Tech. Bull. 9. H. M. S. O., London. 400 pp.Google Scholar
  37. Hughes, T. E. 1959. Mites or the Acari. Athlone Press, London. 225 pp.Google Scholar
  38. Hughes, T. E. and A. M. Hughes. 1939. The internal anatomy and postembryonic development of Glycyphagus domesticus. Proc. Zool. Soc. London 108:715–33.Google Scholar
  39. Kethley, J. B. and D. E. Johnston. 1975. Resource tracking patterns in birds and mammal ectoparasites. Entomol. Soc. Am. Misc. Publ. 9:231–236.Google Scholar
  40. Kim, K. C. 1985a. Evolutionary relationships of parasitic arthropods and mammals. In: Coevolution of Parasitic Arthropods and Mammals (K. C. Kim ed.). Wiley, NY. Pp. 3–82.Google Scholar
  41. Kim, K. C. 1985b. Parasitism and coevolution epilogue. In: Coevolution of Parasitic Arthropods and Mammals (K. C. Kim ed.). Wiley, NY. Pp. 3–82.Google Scholar
  42. Knülle, W. 1959. Morphologische und entwicklungsgeschichtliche Untersuchungen zum phylogenetischen System der Acari: Acariformes Zachv. II. Acaridiae: Acaridae. Mitt. Zool. Mus. Berlin 35:347–417.CrossRefGoogle Scholar
  43. Knülle, W. 1987. Genetic variability and ecological adaptability of hypopus formation in a stored product mite. Exp. Appl. Acarol. 3:21–32.PubMedCrossRefGoogle Scholar
  44. Knülle, W. 1990. Genetic and environmental determinants of hypopus duration in the store-product mite Lepidoglyphus destructor. Exp. Appl. Acarol. 10:231–258.CrossRefGoogle Scholar
  45. Knülle, W. 1991. Life-cycle strategies in unpredictably varying environments: genetic adaptations in a colonizing mite. In: The Acari: Reproduction, Development and Life-history Strategies (R. Schuster and P. W. Murphy eds.). Chapman and Hall, London. Pp. 51–53.Google Scholar
  46. Krantz, G. W. 1978. A Manual of Acarology, 2nd edition. Oregon State Univ. Book Stores, Corvallis, OR. 509 pp.Google Scholar
  47. Kuo, J. S. and H. H. J. Nesbitt. 1971. Internal morphology of the hypopus of Caloglyphus mycophagus. Acarologia 13:156–70.Google Scholar
  48. Lindquist, E. E. 1975. Association between mites and other arthropods in forest floor habitats. Can. Entomol. 107:425–437.CrossRefGoogle Scholar
  49. Michael, A. D. 1884. The hypopus question, or the life history of certain Acarina. J. Linn. Soc. London. Zool. 17:371–394.CrossRefGoogle Scholar
  50. Mitchell, R. 1970. An analysis of dispersal in mites. Am. Nat. 104:425–431.CrossRefGoogle Scholar
  51. Moser, J. C. and E. A. Cross. 1975. Phoretomorph: a new phoretic phase unique to the Pyemotidae (Acarina: Tarsonemoidea). Ann. Entomol. Soc. Am. 68:820–22.Google Scholar
  52. Norton, R. A. 1980. Observations on phoresy in oribatid mites (Acari: Oribatei). Int. J. Acarol. 6:121–130.CrossRefGoogle Scholar
  53. Norton, R.A., J. B. Kethley, D. E. Johnston and B. M. OConnor. 1993. Phylogenetic perspectives on genetic systems and reproductive modes of mites. In: Evolution and Diversity of Sex Ratio in Insects and Mites (D. L. Wrensch and M. A. Ebbert eds.) Routledge, Chapman and Hall, NY. Pp. 8-99.CrossRefGoogle Scholar
  54. Oboussier, H. 1939. Beiträge zur Biologie und Anatomie der Wohnungsmilben. Z. Angew. Entomol. 26:253–96.CrossRefGoogle Scholar
  55. OConnor, B. M. 1979. Evolutionary origins of astigmatid mites inhabiting stored products. In: Recent Advances in Acarology, Vol. 1 (J. G. Rodriguez ed.). Academic Press, NY. Pp. 273–278.Google Scholar
  56. OConnor, B. M. 1982. Evolutionary ecology of astigmatid mites. Annu. Rev. Entomol. 27:385–409.CrossRefGoogle Scholar
  57. Pasteels, J. M., C. Deroe, B. Tursch, J. C. Braekman, D. Daloze, and C. Hootele. 1973. Distribution et activités des alcaloides défensifs des Coccinellidae. J. Insect Physiol. 19:1771–1784.CrossRefGoogle Scholar
  58. Perron, R. 1954. Untersuchungen über Bau, Entwicklung und Physiologie der Milbe Histiostoma laboratorium Hughes. Acta Zool. Stockholm. 35:71–106.CrossRefGoogle Scholar
  59. Peterson, P. C. 1975. An analysis of host–parasite associations among feather mites (Acari: Analgoidea). Misc. Puhl. Entomol. Soc. Am. 9:237–242.Google Scholar
  60. Poinar, G. O., Jr. 1985. Fossil evidence of insect parasitism by mites. Int. J. Acarol. 11:27–38.CrossRefGoogle Scholar
  61. Poinar, G. O., Jr. and D. A. Grimaldi. 1990. Fossil and extant macrochelid mites (Acari: Macrochelidae) phoretic on drosophilid flies (Diptera: Drosophilidae). J. NY Entomol. Soc. 98:88–92.Google Scholar
  62. Price, P. W. 1980. Evolutionary Biology of Parasites. Princeton Univ. Press, Princeton, NJ. 237 pp.Google Scholar
  63. Ricklefs, R. E. 1973. Ecology. Chiron Press, Portland, OR. 861pp.Google Scholar
  64. Samsinák, K. 1971. Die aur Carabus-Arten (Coleoptera, Adephaga) der palaearktischen Region lebenden Milben der Unterordnung Acariformes (Acari); ihre Taxonomie und Bedeutung fur die Losung zoogeographischer, entwicklungsgeschichtlicher und parasitophyletischer Fragen. Entomol. Abh. St. Mus. Tierk. (Dres.) 38:145–234.Google Scholar
  65. Stolpe, S. G. 1938. The life cycle of the tyroglyphid mites infesting cultures of Drosophila melanogaster. Anat. Rec. 72 (Suppl.): 133–34.Google Scholar
  66. Timm, R. M. 1983. Fahrenholz’s rule and resource tracking: a study of host-parasite coevolution. In: Coevolution (M. H. Nitecki ed.). Univ. Chicago Press, Chicago. Pp. 225–265.Google Scholar
  67. Türk, E. and F. Türk. 1957. Systematik und oekologie der tyroglyphiden mitteleuropas. In: Beiträge zur Systematik Oekologie Mitteleuropäischer Acarina, Vol. 1 (H. J. Stammer ed.). Akad., Verlagsges, Leipzig. Pp. 3–231.Google Scholar
  68. Volgin, V. I. 1971. The hypopus and its main types. Proc. 3rd Int. Congr. Acarol., Prague, 1971. Pp. 381–383.Google Scholar
  69. Waage, J. K. 1979. The evolution of insect/vertebrate association. Biol. J. Linn. Soc. 12:187–224.CrossRefGoogle Scholar
  70. Wallace, D. R. J. 1960. Observations on hypopus development in the Acarina. J. Insect Physiol. 5:216–29.CrossRefGoogle Scholar
  71. Wharton, G. W. 1946. Observations on Ascoschongastia indica (Hirst 1915) (Acarina: Thormiculidae [Trombiculidae]). Ecol. Monogr. 16: 152–184.CrossRefGoogle Scholar
  72. Woodring, J. P. and S. C. Carter. 1974. Internal and external morphology of the deutonymph of Caloglyphus boharti (Arachnida: Acari). J. Morphol. 144:275–295.CrossRefGoogle Scholar
  73. Zachvatkin, A. A. 1941. Fauna of U.S.S.R., Arachnoidea. Transl., A. Ratcliff, A. M. Hughes 1959, American Institute of Biological Sciences, Washington, DC. (In Russian). 573 pp.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • Marilyn A. Houck

There are no affiliations available

Personalised recommendations