Effects of Genetic Recombination and Population Subdivision on Nucleotide Sequence Variation in Drosophila ananassae

  • Wolfgang Stephan


Genetic variation in regions of high and low recombination rates was quantified at the DNA sequence level for two natural Drosophila ananassae populations from Myanmar and India. Gene flow between these populations is limited. Levels of DNA sequence variation in regions of low crossing-over per physical length are significantly lower than in regions of intermediate to high crossing-over. Furthermore fixed between-population differences were found in low crossing-over regions but not in regions of high crossing-over. In the latter ones frequency shifts in polymorphisms between populations are more gradual. Simple models of directional selection in conjunction with hitchhiking explain these observations only partially. Local adaptive sweeps have to be postulated to account for the rapid genetic differentiation in regions of restricted recombination.


Centromeric Region Much Recent Common Ancestor Nucleotide Sequence Variation Molecular Genetic Variation Japan Scientific Society 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Aguadé, N. Miyashita and C. H. Langley. (1989). Reduced variation in theyellow-achaete-scuteregion in natural populations ofDrosophila melanogaster. Genetics 122607–615.Google Scholar
  2. 2.
    G. W. Beadle. (1932). A possible influence of spindle fibre on crossing over in Drosophila.Proc. Natl. Acad. Sci.USA18160–165.PubMedCrossRefGoogle Scholar
  3. 3.
    D. J. Begun, and C. F. Aquadro. (1991). Molecular population genetics of the distal portion of theXchromosome in Drosophila: Evidence for genetic hitchhiking of theyellow-achaeteregion.Genetics 1291147–1158.PubMedGoogle Scholar
  4. 4.
    D. J. Begun, and C. F. Aquadro. (1992). Levels of naturally occurring DNA polymorphism correlate with recombination rates inD. melanogaster. Nature 356519–520.CrossRefGoogle Scholar
  5. 5.
    D. J. Begun, and C. F. Aquadro. (1993). African and North American populations ofDrosophila melanogasterare very different at the DNA level.Nature 365548–550.PubMedCrossRefGoogle Scholar
  6. 6.
    A. J. Berry, J. W. Ajioka and M. Kreitman. (1991). Lack of polymorphism on the Drosophila fourth chromosome resulting from selection.Genetics 1291111–1117.Google Scholar
  7. 7.
    I. R. Bock, and M. R. Wheeler. (1972). TheDrosophila melanogasterspecies group. Univ. Texas. Publ.72131–102.Google Scholar
  8. 8.
    B. Charlesworth, M. T. Morgan and D. Charlesworth. (1993). The effect of deleterious mutations on neutral molecular variation.Genetics 1341289–1303.PubMedGoogle Scholar
  9. 9.
    T. Dobzhansky, and A. Dreyfus. (1943). Chromosomal aberrations in BrazilianDrosophila ananassae. Proc. Natl. Acad. Sci. USA 29301–305.CrossRefGoogle Scholar
  10. 10.
    C. W. Hinton. (1988). Formal relations betweenOmmutants and their suppressorsin Drosophila ananassae. Genetics 1201035–1042.Google Scholar
  11. 11.
    R. R. Hudson. (1982). Estimating genetic variability with restriction endonucleases.Genetics 100711–719.PubMedGoogle Scholar
  12. 12.
    R. R. Hudson, M. Slatkin and W. P. Maddison. (1992). Estimation of levels of gene flow from DNA sequence data.Genetics 132583–589.PubMedGoogle Scholar
  13. 13.
    F. M. Johnson. (1971). Isozyme polymorphisms inDrosophila ananassae:Genetic diversity among island populations in the South Pacific.Genetics 6877–95.PubMedGoogle Scholar
  14. 14.
    N. L. Kaplan, R. R. Hudson and C. H. Langley. (1989). The “hitchhiking effect” revisited.Genetics 123887–899.Google Scholar
  15. 15.
    H. Kikkawa. (1938). Studies on the genetics and cytology ofDrosophila ananassae. Genetics 20458–516.Google Scholar
  16. 16.
    M. Kimura. (1983).The Neutral Theory of Molecular Evolution.Cambridge University Press, Cambridge (England).CrossRefGoogle Scholar
  17. 17.
    C. H. Langley, J. MacDonald, N. Miyashita and M. Aguadé. (1993). Lack of correlation between interspecific divergence and intraspecific polymorphism at thesuppressor of forkedregion inDrosophila melanogasterandDrosophila simulans. Proc. Natl. Acad. Sci. USA 901800–1803.CrossRefGoogle Scholar
  18. 18.
    M. Lynch, and T. J. Crease. (1990). The analysis of population survey data on DNA sequence variation.Mol. Biol. Evol. 7377–394.PubMedGoogle Scholar
  19. 19.
    J. M. Martín-Campos, J. M. Comerón, N. Miyashita and M. Aguadé. (1992). Intraspecific and interspecific variation at they-ac-scregion ofDrosophila simulansandDrosophila melanogaster. Genetics 130805–816.Google Scholar
  20. 20.
    K. Mather. (1939). Crossing over and heterochromatin in chromosomes ofDrosophila melanogaster. Genetics 24413–435.Google Scholar
  21. 21.
    J. Maynard Smith, and J. Haigh. (1974). The hitchhiking effect of a favorable gene.Genet. Res. 2323–35.CrossRefGoogle Scholar
  22. 22.
    D. Moriwaki, and Y. N. Tobari. (1975).Drosophila ananassaepp. 513–535 inHandbook of GeneticsVol. 3, edited by R. C. King, Plenum, New York.Google Scholar
  23. 23.
    M. Nei, and W.-H. Li. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases.Proc. Nail. Acad. Sci. USA 765269–5273.CrossRefGoogle Scholar
  24. 24.
    J. T. Patterson, and W. S. Stone. (1952).Evolution in the Genus Drosophila.Macmillan, New York.Google Scholar
  25. 25.
    W. Stephan. (1989). Molecular genetic variation in the centromeric region of theXchromosome in threeDrosophila ananassaepopulations.II.TheOm(1D)Locus.Mol. Biol. Evol. 6624–635.PubMedGoogle Scholar
  26. 26.
    W. Stephan, and C. H. Langley. (1989). Molecular genetic variation in the centromeric region of theXchromosome in threeDrosophila ananassaepopulations. I. Contrasts between thevermilionandforked loci. Genetics 12189–99.Google Scholar
  27. 27.
    W. Stephan, and S. J. Mitchell. (1992). Reduced levels of DNA polymorphism and fixed between-population differences in the centromeric region ofDrosophila ananassae. Genetics 1321039–1045.Google Scholar
  28. 28.
    W. Stephan, T. H. E. Wiehe and M. W. Lenz. (1992). The effect of strongly selected substitutions on neutral polymorphism: Analytical results based on diffusion theory.Theoret. Pop. Biol. 41237–254.CrossRefGoogle Scholar
  29. 29.
    F. Tajima. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism.Genetics 123585–595.PubMedGoogle Scholar
  30. 30.
    S. Tanda, A. E. Shrimpton, C. W. Hinton and C. H. Langley. (1989). Analysis of theOm(ID)locus inDrosophila ananassae. Genetics 123495–502.Google Scholar
  31. 31.
    S. Tavaré. (1984). Line-of-descent and genealogical processes and their applications in populations genetics models.Theoret. Pop. Biol. 26119–164.CrossRefGoogle Scholar
  32. 32.
    Y. N. Tobari. (1993). Linkage maps. In:Drosophila ananassae—Genetical and biological aspects(Y. N. Tobari, ed.). Japan Scientific Societies Press, Tokyo, and Karger, Basel.Google Scholar
  33. 33.
    Y. N. Tobari, B. Goñi, Y. Tomimura and M. Matsuda. (1993). Chromosomes. In:Drosophila ananassae—Genetical and biological aspects(Y. N. Tobari, ed.). Japan Scientific Societies Press, Tokyo, and Karger, Basel.Google Scholar
  34. 34.
    Y. Tomimura, M. Matsuda and Y. N. Tobari. (1993). Polytene chromosome variations ofDrosophila ananassaeand its relatives. In:Drosophila ananassae—Genetical and biological aspects(Y. N. Tobari, ed.). Japan Scientific Societies Press, Tokyo, and Karger, Basel.Google Scholar
  35. 35.
    B. S. Weir, and C. C. Cockerham. (1984). Estimating F-statistics for the analysis of population structure.Evolution 381358–1370.CrossRefGoogle Scholar
  36. 36.
    S. Wright. (1951). The genetical structure of populations.Ann. Eugenics 15323–354.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • Wolfgang Stephan

There are no affiliations available

Personalised recommendations