Skip to main content

Genetic Divergence, Reproductive Isolation and Speciation

  • Chapter
Non-Neutral Evolution
  • 119 Accesses

Abstract

Species are the most readily recognizable units in the diversity of life and the mechanism of speciation has always been and still is a central problem in evolutionary biology.33 Almost all species with which we come in contact in daily life and certainly a large proportion of the formally described species show large gaps of qualitative or quantitative nature and this large gap has been a stumbling block to the study of speciation. This is for two reasons. First, presence of large gaps between species meant that species-specific traits could not be subjected to Mendelian genetic analysis, and second, the large gaps observed between species were used to propose theories of speciation which went against the neo-Darwinian mechanisms of gradual evolution (e.g., see Bateson 1894, Goldschmidt 1940). It is therefore not surprising that most genetic theories of speciation advocating macroevolutionary mechanisms of speciation, prior to the advent of molecular techniques in 1960s, were based on large changes in the genome such as chromosomal changes or macromutations.23,59 On the other hand, the neo-Darwinian theories were based on a collection of genetic and ecological factors, with strong emphasis on natural selection and geographic isolation which was required to complete the job of reproductive isolation.20,27,32,55

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. J. Ayala. (1975). Genetic differentiation during the speciation process.Evol. Biol. 81–78.

    Google Scholar 

  2. W. Bateson. (1894).Materials for the study of variation.Macmillan, London.

    Google Scholar 

  3. D. J. Begun and C. F. Aquadro. (1992). Levels of naturally occurring DNA polymorphism correlate with recombination rates inD. melanogaster. Nature 356519–520.

    Article  CAS  Google Scholar 

  4. B. Charlesworth, J. A. Coyne and N. H. Barton. (1987). Relative rates of evolution of sex chromosomes and autosomes.American Naturalist 130113–146.

    Article  Google Scholar 

  5. B. Charlesworth, J. A. Coyne and H. A. Orr.(1993). Meiotic drive and unisexual hybrid sterility: a comment.Genetics 133421–424.

    PubMed  CAS  Google Scholar 

  6. M. Choudhary and R. S. Singh. (1987). A comprehensive study of genic variation in natural populations ofDrosophila melanogaster III.Variation in genetic structure and their causes betweenDrosophila melanogasterand its sibling speciesDrosophila simulans. Genetics 117697–710.

    CAS  Google Scholar 

  7. M. Choudhary, M. B. Coulthart and R. S. Singh. (1992). A comprehensive study of genic variation in natural populations ofDrosophila melanogasterVI. Patterns and processes of genic divergence betweenD. melanogasterand its sibling speciesD. simulans. Genetics 130843–853.

    CAS  Google Scholar 

  8. M. B. Coulthart and R. S. Singh. (1988a). Differing amounts of genetic polymorphism in testes and male accessory glands ofDrosophila melanogasterandDrosophila simulans. Biochem. Genet. 26153–153.

    CAS  Google Scholar 

  9. M. B. Coulthart and R. S. Singh. (1988b). High level of divergence of malereproductive-tract proteins, betweenDrosophila melanogasterand its sibling speciesD. simulans. Mol. Biol. Evol. 5182–182.

    CAS  Google Scholar 

  10. M. B. Coulthart and R. S. Singh. (1988c). Low genic variation in male-reproductivetract proteins ofDrosophila melanogaster and D. simulans.Mol. Biol. Evol. 5167–167.

    CAS  Google Scholar 

  11. J. A. Coyne. (1984). Genetic basis of male sterility in hybrid between two closely related species ofDrosophila. Proc. Natl. Acad. Sci. U.S.A. 814111–1117.

    Article  Google Scholar 

  12. J. A. Coyne. (1985). The genetic basis of Haldane’s rule.Nature 314736–738.

    Article  PubMed  CAS  Google Scholar 

  13. J. A. Coyne. (1992). Genetics and speciation.Nature 355511–515.

    Article  PubMed  CAS  Google Scholar 

  14. J. A. Coyne. (1993). The genetics of an isolating mechanism between two sibling species ofDrosophila . Evolution 47778–788.

    Article  Google Scholar 

  15. J. A. Coyne and B. Charlesworth. (1986). Localization of an X-linked factor causing sterility in male hybrids between two closely related species ofDrosophila . Heredity 57243–246.

    Article  PubMed  Google Scholar 

  16. J. A. Coyne and B. Charlesworth. (1989). Genetic analysis of X-linked sterility in hybrids between three sibling species ofDrosophila . Heredity 6297–106.

    Article  PubMed  Google Scholar 

  17. J. A. Coyne and M. Kreitman. (1986). Evolutionary genetics of two sibling species, Drosophila simulans andD. sechellia . Evolution 40(4)673–691.

    Article  CAS  Google Scholar 

  18. J. A. Coyne and H. A. Orr. (1989). Two rules of speciation. pp. 189–211 inSpeciation and its consequences, edited by D. Otte and J. Endler. Sinauer Press, Sunderland, Mass.

    Google Scholar 

  19. Th. Dobzhansky. (1936). Studies on hybrid sterility. H. Localization of sterility factors inDrosophila pseudoobscurahybrids.Genetics 21113–135.

    PubMed  CAS  Google Scholar 

  20. Th. Dobzhansky. (1937a).Genetics and The Origin of SpeciesColumbia University Press, New York.

    Google Scholar 

  21. W. Hennig. (1977). Gene interactions in germ cell differentiation ofDrosophila. Pages 363–371 in G. Weber, ed.Advances in enzyme regulations. Vol. 15. Pergamon, Oxford.

    Google Scholar 

  22. J. Gillespie. (1991).The Causes of Molecular Evolution.Oxford, London.

    Google Scholar 

  23. R. Goldschidt. (1940).The material basis of evolution.Yale University, New Haven.

    Google Scholar 

  24. J. B. S. Haldane. (1922). Sex ratio and unisexual sterility in hybrid animals. J.Genetics 12101–109.

    Article  Google Scholar 

  25. E. Heikkinen and J. Lumme. (1991). Sterility of males and female hybridsof Drosophila virilisandDrosophila lummei . Heredity 671–11.

    Article  PubMed  Google Scholar 

  26. P. Hutter and M. Ashburner. (1987). Genetic rescue of inviable hybrids between Drosophila melanogaster and its sibling species.Nature 327331–333.

    Article  PubMed  CAS  Google Scholar 

  27. J. S. Huxley. (1942).Evolution: The modern Synthesis.London: Allen & Unwin.

    Google Scholar 

  28. N. A. Johnson. (1992). Genetics of hybrid male sterility in three sibling species of theDrosophila melanogasterspecies subgroup. Ph. D. thesis, University of Rochester, Rochester, New York.

    Google Scholar 

  29. N. A. Johnson and C.-I. Wu. (1992). An empirical test of the meiotic drive models of hybrid sterility: sex-ratio data from hybrids betweenDrosophila simulansandDrosophila sechellia. Genetics 130507–511.

    CAS  Google Scholar 

  30. R. M. Kliman and J. Hey. (1993). DNA sequence variation at the period locus within and among species of theDrosophila melanogastercomplex.Genetics 133375–387.

    PubMed  CAS  Google Scholar 

  31. R. C. Lewontin. (1974).The genetic basis of evolutionary change.Columbia, New York.

    Google Scholar 

  32. E. Mayr. (1963).Animal Species and Evolution.Harvard, Cambridge.

    Google Scholar 

  33. E. Mayr. (1982).The Growth of Biological Thought: Diversity Evolution and Inheritance.Harvard, Cambridge.

    Google Scholar 

  34. M. Nei. (1987).Molecular Evolutionary Genetics.Columbia, New York.

    Google Scholar 

  35. H. Naveira and A. Fontdevila. (1986). The evolutionary history ofDrosophila buzzatii.XII. The genetic basis of sterility in hybrids betweenD. buzzatiiand its siblingD. seridofrom Argentina.Genetics 114841–857.

    PubMed  CAS  Google Scholar 

  36. H. Naveira and A. Fontdevila. (1991a). The evolutionary history ofDrosophila buzzatii.XXI. Cumulative action of multiple sterility factors on spermatogenesis in hybrids ofD. buzzatiiandD. koepferae.Heredity 6757–72.

    Article  Google Scholar 

  37. H. Naveira and A. Fontdevila. (1991b). The evolutionary history ofDrosophila buzzatii.XXII. Chromosomal and genic sterility in male hybrids ofD. buzzatiiandD. koepferae. Heredity 66233–240.

    Article  Google Scholar 

  38. H. F. Naveira. (1992). Location of X-linked polygenic effects causing sterility in male hybrids ofDrosophila simulansandD. mauritiana. Heredity 68211–217.

    Article  Google Scholar 

  39. H. A. Orr. (1987). Genetics of male and female sterility in hybrids ofDrosophila pseudoobscuraandD. persimilis. Genetics 116555–563.

    CAS  Google Scholar 

  40. H. A. Orr. (1989). Localization of genes causing postzygotic isolation in two hybridizations involvingDrosophila pseudoobscura. Heredity 63231–237.

    Google Scholar 

  41. H. A. On and J. A. Coyne. (1989). The genetics of postzygotic isolation in theDrosophila virilisgroup.Genetics 121527–537.

    Google Scholar 

  42. A. C. Pantazidis and E. Zouros. (1988). Location of an autosomal factor causing sterility inDrosophila mojavensismales carrying theDrosophila arizonensisY chromosome.Heredity 60299–304.

    Article  PubMed  Google Scholar 

  43. A. C. Pantazidis, V. K. Galanopoulos and E. Zouros. (1993). An autosomal factor fromDrosophila arizonaerestores normal sptermatogenesis inDrosophila mojavensismales carrying theDrosophila arizonaeY chromosome.Genetics 134309–318.

    PubMed  CAS  Google Scholar 

  44. D. E. Perez, C.-I. Wu, N. A. Johnson and M.-L. Wu. (1993). Genetics of reproductive isolation in the Drosophila clade: DNA marker-assisted mapping and characterization of a hybrid-male sterility geneOdysseus (Ods ). Genetics 133261–275.

    Google Scholar 

  45. A. Pomiankowski and L. D. Hurst. (1993). Genomic conflicts underlying Haldane’s rule.Genetics 133425–432.

    Google Scholar 

  46. J. R. Powell, A. Caccone, J. M. Gleason and L. Nigro. (1993). Rates of DNA evolution in Drosophila depend on function and developmental stages of expression.Genetics 133291–298.

    PubMed  CAS  Google Scholar 

  47. K. Sawamura, T. Taira and T. K. Watanabe. (1993). Maternal hybrid rescue (mhr): the gene which rescues embryonic lethal hybrids fromDrosophila simulansfemales crossed withD. melanogastermales.Genetics 133299–305.

    PubMed  CAS  Google Scholar 

  48. K. Sawamura, M.-T. Yamamoto and T. K. Watanabe. (1993). Hybrid lethal systems in Drosophila melanogaster species complex. II. Thezygotic hybrid rescue (Zhr)gene ofD. melanogaster . Genetics 133307–313.

    PubMed  CAS  Google Scholar 

  49. K. Sawamura and M.-T. Yamamoto. (1993). Cytogenetical localization of Zygotic hybrid rescue (Zhr), a Drosophila melanogaster gene that rescues interspecific hybrids from embryonic lethality.Mol Gen Genet 239441–449.

    Article  PubMed  CAS  Google Scholar 

  50. U. Schafer. (1978). Sterility inDrosophila hydeiXDrosophila neohydeihybrids.Genetica 49205–214.

    Article  Google Scholar 

  51. R. S. Singh. (1989). Population genetics and evolution of species related toDrosophila melanogaster.Ann. Rev. Genet . 23425–453.

    Article  PubMed  CAS  Google Scholar 

  52. R. S. Singh. (1990). Patterns of species divergence and genetic theories of speciation. In K. Wohrman and S. K. Jain (eds.)Population Biology: Ecological and evolutionary viewpointspp. 231–264, Springer-Verlag, Berlin, Hadelberg.

    Google Scholar 

  53. D. O. F. Skibinski and R. D. Ward. (1981). Relationship between allozyme heterozygosity and rate of divergence.Genet. Res. 3871–92.

    Article  Google Scholar 

  54. D. O. F. Skibinski and R. D. Ward. (1982). Correlations between heterozygosity and evolutionary rates of proteins.Nature 298490–492.

    Article  CAS  Google Scholar 

  55. G. L. Stebbins. (1950).Variation and Evolution.Harvard, Cambridge.

    Google Scholar 

  56. L. H. Throckmorton. (1977).Drosophilasystematics and biochemical evolution.Ann. Rev. Ecol. Syst. 8235–254.

    Article  CAS  Google Scholar 

  57. S. Thomas and R. S. Singh. (1992). A comprehensive study of genic variation in natural populations ofDrosophila melanogasterVII. Varying rates of genic divergence as revealed by 2-dimensional electrophoresis.Mol. Biol. Evol. 9507–525.

    PubMed  CAS  Google Scholar 

  58. T. K. Watanabe. (1979). A gene that rescues the lethal hybrids betweenDrosophila melanogasterandD. simulans.Japanese Journal of Genetics 54325–331.

    Article  Google Scholar 

  59. M. J. D. White. (1978).Modes of Speciation.Freeman, San Francisco.

    Google Scholar 

  60. C.-I. Wu and A. Beckenbach. (1983). Evidence for extensive genetic differentiation between the sex ratio and the standard arrangement ofDrosophila pseudoobscuraandD. persimilisand identification of hybrid sterility factors.Genetics 10571–86.

    PubMed  CAS  Google Scholar 

  61. C.-I. Wu, and A. W. Davis. (1993). Evolution of postmating reproductive isolation: The composite nature of Haldane’s rule and its genetic bases.American Naturalist 142187–212.

    Article  PubMed  CAS  Google Scholar 

  62. C.-I. Wu, D. E. Perez, A. W. Davis, N. A. Johnson, E. L. Cabot. M. F. Palopoll and M.-L. Wu. (1992). Molecular genetic studies of postmating reproductive isolation inDrosophila.In:Proceedings of the 17th Taniguchi Symposium in BiophysicsMishima, Japan, edited by N. Takahata and A. G. Clark. Springer-Verlag, Berlin.

    Google Scholar 

  63. L.-W. Zeng and R. S. Singh. (1993a). The genetic basis of Haldane’s rule and the nature of asymmetric hybrid male sterility betweenDrosophila simulans D. mauritanaandD. sechellia.Genetics 134251–260.

    CAS  Google Scholar 

  64. L.-W. Zeng and R. S. Singh. (1993b). A combined classical genetic and high resolution two-dimensional electrophoretic approach to the assessment of the number of genes affecting hybrid male sterility inDrosophila simulansandDrosophila sechellia. Genetics 135135–147.

    CAS  Google Scholar 

  65. L.-W. Zeng and R. S. Singh. (1994). A general method for the identification and mapping of major genes affecting hybrid male sterility inDrosophila. Proc. Natl. Acad. Sci. USA(submitted).

    Google Scholar 

  66. E. Zouros, K. Lofdahl, and P. Martin. (1988). Male hybrid sterility inDrosophila:interactions between autosomes and sex chromosomes ofD. mojavensisandD. arizonensis. Evolution 421321–1331.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Singh, R.S., Zeng, LW. (1994). Genetic Divergence, Reproductive Isolation and Speciation. In: Golding, B. (eds) Non-Neutral Evolution. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2383-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2383-3_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-05391-7

  • Online ISBN: 978-1-4615-2383-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics