The Divergence of Halophilic Superoxide Dismutase Gene Sequences: Molecular Adaptation to High Salt Environments

  • Patrick P. Dennis


During the divergence of homologous sequences, nucleotide substitutions can become fixed either through random processes or by virtue of positive selection.6,9,14 The underlying components that together contribute to a positive selection value for a given substitution can be many and varied. They could include selection (i) for altered structure or function within the encoded protein, (ii) for codon utilization as it relates to either efficiency or accuracy of mRNA translation, and (iii) for regulatory signals or secondary structure embedded in the DNA or mRNA sequence.


Nonsynonymous Substitution Halophilic Protein Acidic Amino Acid Residue Paralogous Gene Pair High Salt Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Brenner. (1988).Nature334, 428–430.CrossRefGoogle Scholar
  2. 2.
    P. Dennis. (1986).J. Bact.168, 471–478.PubMedGoogle Scholar
  3. 3.
    H. Eisenberg, M. Mevarech, and G. Zaccai. (1992).Advan. Prot. Chem.43, 1–62.CrossRefGoogle Scholar
  4. 4.
    C. Englert, M. Home, and F. Pfeifer. (1990).Mol. Gen. Genet.222, 225–232.PubMedCrossRefGoogle Scholar
  5. 5.
    I. Fredovich, 1986.Adv. Enzymol.58, 68–97.Google Scholar
  6. 6.
    R. R. Hudson, M. Kreitman, and M. Aquade. (1987).Genetics116, 153–159.PubMedGoogle Scholar
  7. 7.
    P. Joshi, and P. P. Dennis. (1992).J. Bacteriol.175, 1561–1571.Google Scholar
  8. 8.
    P. Joshi, and P. P. Dennis. (1992).J. Bacteriol.175, 1572–1579.Google Scholar
  9. 9.
    M. Kimura. (1986).Nature217, 624–626.CrossRefGoogle Scholar
  10. 10.
    J. Lanyi. (1974).Bacteriol. Rev.38, 272–290.PubMedGoogle Scholar
  11. 11.
    B. P. May, and P. P. Dennis. (1990).J. Bacteriol.172, 3725–3729.PubMedGoogle Scholar
  12. 12.
    B. P. May, and P. P. Dennis. (1987).J. Bacteriol.169, 1417–1422.PubMedGoogle Scholar
  13. 13.
    B. P. May, and P. P. Dennis. (1989).J. Biol. Chem.264, 12253–12258.PubMedGoogle Scholar
  14. 14.
    H. Ochman, and A. C. Wilson. (1987).J. Mol. Evol.26, 74–86.PubMedCrossRefGoogle Scholar
  15. 15.
    M. Parker, and C. C. Blake. (1988).Febs. Letters119, 377–382.CrossRefGoogle Scholar
  16. 16.
    N. Saiton, and M. Nei. (1987).Mol. Biol. Evol.4, 406–425.Google Scholar
  17. 17.
    W. Seanger. (1987). Ann. Rev. Biophys. Chem. 16, 93–114.CrossRefGoogle Scholar
  18. 18.
    L. Shimmin, and P. P. Dennis. (1989).EMBO J.8, 1225–1235.PubMedGoogle Scholar
  19. 19.
    W. C. Stallings, K. A. Partridge, R. K. Stong, and B. Ludwig. (1985).J. Biol. Chem.260,16424–16432.PubMedGoogle Scholar
  20. 20.
    C. R. Woese. (1987).Microbiol. Rev.51, 221–271.PubMedGoogle Scholar
  21. 21.
    C. R. Woese, O. Kandler, and Wheelis. (1990).Proc. Natl. Acad. Sci. USA87, 4576–4579.PubMedCrossRefGoogle Scholar
  22. 22.
    G. Zaccai, F. Candrin, Y. Haik, N. Borokov, and H. Eisenberg. (1989).J. Mol. Biol.208, 491–500.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • Patrick P. Dennis

There are no affiliations available

Personalised recommendations