Skip to main content

Flux Growth and Properties of Oxide Crystals

  • Chapter
Growth of Crystals

Part of the book series: Growth of Crystals ((GROC,volume 19))

Abstract

Growth of single crystals using crystallization from low-melting fluxes, i.e., solvents [1–3], is interesting from several viewpoints. Firstly, this is the most universal method and enables crystals to be prepared from compounds melting with decomposition, experiencing reconstructive phase transitions at extremely high temperatures, etc. Other methods of growing these crystals are not always feasible. Secondly, the flux method is most interesting from a physicochemical aspect since it is based on a knowledge of the phase diagrams of binary or more complicated systems and the properties and structure of the crystal and melt and many other factors. The success of the method mainly depends on the correct choice of the crystal-solvent system. Thirdly, the single crystals obtained using this method are usually highly perfect and have plane-faceted shapes. This enables certain data about the growth mechanisms to be obtained by studying their morphology and the relief of the faces. Fourthly, the flux method is most similar to the growth of crystals under natural conditions and additional information on their genesis can be obtained. In a number of instances, rather large crystals can be produced for some practical applications or others (for example, see a review [4]) using flux crystallization. However, this method is more frequently used for scientific purposes as a means of preparing specimens of new or previously unknown crystals for investigating their structure and properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. A. Timofeeva, Flux Growth of Crystals [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  2. D. Elwell and H. J. Scheel, Crystal Growth from High-temperature Solutions, Academic Press, London (1975).

    Google Scholar 

  3. A. A. Chernov, E. I. Givargizov, Kh. S. Bagdasarov, et al., Modern Crystallography, Vol. 3 [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  4. V. A. Timofeeva, “Progress in flux growth of large crystals,” in: Growth of Crystals, E. I. Givargizov (ed.), Consultants Bureau, New York (1986), pp. 239–250.

    Chapter  Google Scholar 

  5. V. I. Voronkova, V. K. Yanovskii, and V. A. Koptsik, “Morphology and certain properties of A12O3 crystals grown from tungstate melts,” Dokl. Akad. Nauk SSSR, 177, No. 3, 571–573 (1967).

    CAS  Google Scholar 

  6. V. I. Voronkova, V. K. Yanovskii, and V. A. Koptsik, “Growth of corundum single crystals from tungstate fluxes,” Izv. Akad. Nauk SSSR, Neorg. Mater., 4, No. 10, 1727–1731 (1968).

    CAS  Google Scholar 

  7. V. I. Voronkova, V. A. Koptsik, and V. K. Yanovskii, “Method of growing corundum single crystals,” USSR Pat. No. 223,066; Byull. Izobret., No. 31 (1969).

    Google Scholar 

  8. D. Elwell, Artificial Precious Stones [Russian translation], Mir, Moscow (1981).

    Google Scholar 

  9. V. K. Yanovskii, “Growth of single crystals of high-temperature oxides,” Zh. Vses. Khim. O’va im. D. I. Mendeleeva, 13, No. 2, 134–142 (1968).

    CAS  Google Scholar 

  10. D. O. Brodichko, V. K. Yanovskii, and V. A. Koptsik, “Growth of MgO single crystals in MgO-P2O5-WO3 and MgO-Na2O-P2O5-WO3 systems,” Izv. Akad. Nauk SSSR, Neorg. Mater., 4, No. 12, 2158–2160 (1968).

    CAS  Google Scholar 

  11. H. Vora and R. R. Zupp, “Single-crystal growth of magnesium oxide by the flux method,” Mater. Res. Bull., 5, No. 11, 977–982 (1970).

    Article  CAS  Google Scholar 

  12. M. A. Gaffar, V. A. Koptsik, and V. K. Yanovskii, “Growth of optical-quality KNbO3 crystals from a flux,” Kristallografiya, 21, No. 3, 626–627 (1976).

    CAS  Google Scholar 

  13. Yu. S. Kuz’minov, Lithium Niobate and Tantalate, Materials for Nonlinear Optics [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  14. V. I. Voronkova, N. F. Evlanova, and V. K. Yanovskii, “Crystallization of LiNbO3 from borate, vanadate, and tungstate fluxes,” Kristallografiya, 23, No. 1, 234–236 (1978).

    CAS  Google Scholar 

  15. R. F. Belt, G. Gashurov, and Y. S. Liu, “KTP as a harmonic generator for Nd:YAG lasers,” Laser Focus (Littleton, Mass.), 21, No. 10, 110–124 (1985).

    CAS  Google Scholar 

  16. V. I. Voronkova, S. Yu. Stefanovich, and V. K. Yanovskii, “Ferroelectric phase transitions and properties of nonlinear-optics KTiPO4 crystals and their analogs,” Kvantovaya Elektron. (Moscow), 15, No. 4, 752–756 (1988).

    CAS  Google Scholar 

  17. V. I. Voronkova and V. K. Yanovskii, “Flux growth and properties of KTiOPO4 crystals,” Izv. Akad. Nauk SSSR, Neorg. Mater., 24, No. 2, 237–277 (1988).

    Google Scholar 

  18. V. K. Yanovskii and V. I. Voronkova, “Growth and principal properties of crystals of rare earth and yttrium oxotungstates Ln2WO6,” Izv. Akad. Nauk SSSR, Neorg. Mater., 11, No. 1, 91–94 (1975).

    CAS  Google Scholar 

  19. V. K. Yanovskii and V. I. Voronkova, “Growth and principal properties of crystals of rare earth and yttrium oxomolybdates Ln2MoO6,” Izv. Akad. Nauk SSSR, Neorg. Mater., 12, No. 1, 140–142 (1976).

    CAS  Google Scholar 

  20. V. I. Voronkova and V. K. Yanovskii, “Growth of rare earth oxotungstates Ln2WC6 from a flux,” Kristallografiya, 21, No. 1, 236–238 (1976).

    CAS  Google Scholar 

  21. V. K. Yanovskii and V. I. Voronkova, “Crystallography and properties of Ln2WO6 single crystals,” Kristallografiya, 20, No.3, 579–582 (1975).

    CAS  Google Scholar 

  22. V. K. Yanovskii and V. I. Voronkova, “Polytypism of La2WO6 crystals,” Kristallografiya, 26, No. 3, 604–606 (1981).

    CAS  Google Scholar 

  23. V. K. Yanovskii and V. I. Voronkova, “The system Bi2WO6-La2WO6 in the subsolidus region and Bi2WO6,” Zh. Neorg. Khim., 26, No. 2, 549–552 (1981).

    CAS  Google Scholar 

  24. A. Watanabe, Z. Inoue, and T. Ohsaka, “Synthesis and crystallography of new layered bismuth lanthanum tungstate, Bi2-xLaxWO6 (x = 0.4-1.0),” Mater. Res. Bull., 15, No. 3, 397–404 (1980).

    Article  CAS  Google Scholar 

  25. V. I. Voronkova, V. K. Yanovskii, and V. A. Koptsik, “Growth of ß-Ga2O3 and A12(WO4)3 crystals from sodium polytungstate flux,” Vestn. Mosk. Univ., Fiz., Astron., 23, No. 3, 109–112 (1968).

    CAS  Google Scholar 

  26. V. I. Voronkova, T. G. Kozinskaya, and V. K. Yanovskii, “Growth and properties of Dy2(MoO4)3 crystals,” Kristallografiya, 23, No. 4, 865–867 (1978).

    CAS  Google Scholar 

  27. R. K. Sviridova, V. I. Voronkova, and S. S. Kvitka, “Spectra of A12O3-3WO3 crystals containing Cr3+ at 290-4.2 K,” Kristallografiya, 15, No. 5, 1077–1078 (1970).

    CAS  Google Scholar 

  28. K. Petermann and P. Mitzscherlich, “Spectroscopic and laser properties of Cr3+-doped A12(WO4)3 and Sc2(WO4)3,” IEEE J. Quant. Electron., 23, No. 7, 1122–1126 (1987).

    Article  Google Scholar 

  29. V. V. Mikhailin, R. K. Sviridov, B. N. Meleshkin, and V. I. Voronkova, “Study of the optical properties of various tungstate structures containing chromium ions,” in: Spectroscopy of Crystals [in Russian], Nauka, Moscow (1975), pp. 346–353.

    Google Scholar 

  30. S. Yu. Stefanovich, V. K. Yanovskii, A. W. Astafyev, et al., “Ferroelectric-superionic conductor phase transitions in MeNbWO6.nH2O (Me = Tl, Rb) crystals,” Jpn. J. Appl Phys., Part 1, 24(Suppl. 24-2), 373–375 (1985).

    Google Scholar 

  31. A. V. Astaf’ev, A. A. Bosenko, V. I. Voronkova, et al., “Dielectric and optical properties and ionic conductivity of TlNbWO6and RbNbWO6 crystals,” Kristallografiya, 31, No. 5, 968–973 (1986).

    CAS  Google Scholar 

  32. N. N. Bydanov, T. S. Chernaya, L. A. Muradyan, et al., “Neutron-diffraction refinement of the atomic structures of RbNbWO6 and TlNbWO6 crystals,” Kristallografiya, 32, No. 3, 623–630 (1987).

    CAS  Google Scholar 

  33. V. K. Yanovskii, V. I. Voronkova, and V. A. D’yakov, “Tungstates with the hexagonal tungsten bronze structure,” Kristallografiya, 21, No. 5, 976–980 (1976).

    CAS  Google Scholar 

  34. G. N. Minaeva, V. I. Voronkova, and V. K. Yanovskii, “New compounds with the hexagonal tungsten bronze structure with thermal dielectric anomalies,” Kristallografiya, 24, No. 2, 276–279 (1979).

    CAS  Google Scholar 

  35. V. K. Yanovskii, V. I. Voronkova, and S. Yu. Stefanovich, “Crystallography, polymorphism, and properties of potassium tungstate-niobate,” Kristallografiya, 22, No. 6, 1283–1287 (1977).

    CAS  Google Scholar 

  36. I. P. Klimova, V. I. Voronkova, S. A. Okonenko, et al., “Growth and certain properties of RbNbW2O9 crystals,” Kristallografiya, 25, No. 1, 119–124 (1980).

    CAS  Google Scholar 

  37. V. K. Yanovskii, V. I. Voronkova, and I. P. Klimova, “Ferroelectrics with the structure of hexagonal tungsten bronze type,” Ferroelectrics, 48, No. 4, 239–246 (1983).

    Article  CAS  Google Scholar 

  38. P. Ju Lin and L. A. Bursill, “High-resolution electron microscopic study of the hexagonal bronze potassium niobium tungstate (PNT),” Ferroelectrics, 74, No. 1, 23–36 (1987).

    Article  Google Scholar 

  39. V. I. Voronkova and V. K. Yanovskii, “Growth of Bi2WO6 single crystals,” Kristallografiya, 22, No. 2, 429–430 (1977).

    CAS  Google Scholar 

  40. V. K. Yanovskii and V. I. Voronkova, “Polymorphism and properties of Bi2WO6 and Bi2MoO6,” Phys. Status Solidi A, 93, No. 1, 57–66 (1986).

    Article  CAS  Google Scholar 

  41. V. K. Yanovskii, V. I. Voronkova, and I. A. Rudenkova, “Structure and properties of layered crystalline phases in the system Bi2WO6-Bi4Ti3O12,” Kristallografiya, 29, No. 2, 298–303 (1984).

    CAS  Google Scholar 

  42. V. K. Yanovskii and V. I. Voronkova, “The structure and ferroelectric properties of layered compounds in the system Bi2WO6-Bi4Ti3O12,” Phys. Status Solidi A, 101, No. 1, 45–50 (1987).

    Article  Google Scholar 

  43. V. K. Yanovskii and V. I. Voronkova, “Structure, polymorphism, and ferroelectric properties of mixed layered compounds containing Bi,” Izv. Akad. Nauk SSSR,Neorg. Mater., 22, No. 12, 2029–2033 (1986).

    CAS  Google Scholar 

  44. V. K. Yanovskii and V. I. Voronkova, “Ferroelectric compounds containing Bi with the mixed layered perovskite structure,” Kristallografiya, 23, No. 5, 1280–1283 (1988).

    Google Scholar 

  45. V. K. Yanovskii, V. I. Voronkova, Yu. E. Roginskaya, and Yu. N. Venevtsev, “Rapid anion transport in Bi2WO6crystals,” Fiz. Tverd. Tela (Leningrad), 24, No. 9, 2829–2831 (1982).

    Google Scholar 

  46. P. J. Picone, H. P. Jenssen, and D. R. Gabbe, “Top seed solution growth of La2Cu04,” J. Cryst. Growth, 85, No. 7, 576–580 (1987).

    Article  CAS  Google Scholar 

  47. M. W. Shafer, T. Penney, and B. L. Olson, “Correlation of T c with hole concentration in La2_x SrxCu superconductors,” Phys. Rev. B, 36, No. 7, 4047–4050 (1987).

    Article  CAS  Google Scholar 

  48. I. V. Vodolazskaya, V. I. Voronkova, R. S. Gvozdover, et al., “Growth and properties of crystals of high-temperature superconductors of the RBa2Cu3O7-x and La2CuO4 types and behavior of these compounds at high temperatures” in: Abstracts of Papers of the Seventh All-Union Conference on Crystal Growth [in Russian], Moscow (1988}), Part 2, p. 3

    Google Scholar 

  49. R. S. Roth, K. L. Davis, and J. R. Dennis, “Phase equilibrium and crystal chemistry in the system Ba-Y-Cu-O,” Adv. Ceram. Mater., 2, No. 3B, 303–313 (1987).

    CAS  Google Scholar 

  50. D. O. Brodichko and V. K. Yanovskii, “Preparation of zinc oxide crystals by hydrolysis of ZnF2 in the melt,” Uch. Zap. Tiraspol. Gos. Pedagog. Inst., 21, No. 1, 7–11 (1970).

    CAS  Google Scholar 

  51. V. K. Yanovskii and V. I. Voronkova, “Refinement of phase equilibria in the system La2O3-WO3 near the 1:1 composition,” Izv. Akad. Nauk SSSR, Neorg. Mater., 19, No. 3, 416–421 (1983).

    CAS  Google Scholar 

  52. V. K. Yanovskii and V. I. Voronkova, “Flux growth and characteristics of some ferroelectric and related crystals,” J. Cryst. Growth, 52, No. 2, 654–659 (1981).

    Article  CAS  Google Scholar 

  53. N. Z. Evzikova, “Principles of the structural-geometric analysis of crystal faces,” Zap. Vses. Mineralog. Obshchestva, 94, No. 2, 120–142 (1965).

    CAS  Google Scholar 

  54. V. I. Voronkova and V. K. Yanovskii, “Morphology of KTiOPO4 crystals,” Kristallografiya, 31, No. 1, 207–208 (1986).

    CAS  Google Scholar 

  55. V. K. Yanovskii, V. I. Voronkova, and V. A. Koptsik, “Effect of adsorption of a tungstate melt on the shape and growth mechanism of corundum crystals,” Kristallografiya, 15, No. 2, 362–366 (1970).

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Voronkova, V.I., Yanovskii, V.K., Vodolazskaya, I.V., Shubentsova, E.S. (1993). Flux Growth and Properties of Oxide Crystals. In: Givargizov, E.I., Grinberg, S.A. (eds) Growth of Crystals. Growth of Crystals, vol 19. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2379-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2379-6_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6010-0

  • Online ISBN: 978-1-4615-2379-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics