Skip to main content

VLSI CMOS Subsystem Design

  • Chapter
Low-Power Digital VLSI Design

Abstract

In this chapter, we study the application of the circuit techniques developed through Chapter 4 in the implementation of CMOS building blocks such as adders, multipliers, ALUs, data-path, and regular structures, etc. The power dissipation constraint is also included through the several options presented for each circuit. The use of Phase locked Loop (PLL) in high-speed CMOS systems for deskewing the internal clock is also examined. Low-power issues of the circuits presented are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Mori, et al., “A 10-ns 54 x 54-b Parallel Structured Full Array Multiplier with 0.5-µm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 26, no. 4, pp. 600-606, April 1991.

    Google Scholar 

  2. J. Sklansky, “An Evaluation of Several Two-Summand Binary Adders,” IRE Transactions on Electronic Computers, vol. EC-9, pp. 213–226, June 1960.

    Article  MathSciNet  Google Scholar 

  3. J. Sklansky, “Conditional-Sum Addition Logic,” IRE Transactions on Electronic Computers, vol. EC-9, pp. 226–231, June 1960.

    Article  MathSciNet  Google Scholar 

  4. I. S. Abu-Khater, R. H. Yan, A. Bellaouar, and M. I. Elmasry, “A 1-V Low-Power High-Performance 32-b Conditional Sum Adder,” IEEE Symposium on Low-Power Electronics, Tech. Dig., San Diego, pp. 66–67, October 1994.

    Google Scholar 

  5. T. Sato, et al., “An 8.5ns 112-b Transmission Gate Adder with a Conflict-Free Bypass Circuit,” IEEE Journal of Solid-State Circuits, vol. 27, no. 4, pp. 657–659, April 1992.

    Article  Google Scholar 

  6. K. Ueda, H. Suziki, K. Suda, Y. Tasujihashi, H. Shinohara, “A 64-bit Adder By Pass Transistor BiCMOS Circuit,” IEEE Custom Integrated Circuit Conference, Tech. Dig., pp. 12.2.1–12.2.4, May 1993.

    Google Scholar 

  7. K. Hwang, “Computer Arithmetic: Principles, Architecture, and Design,” John Wiley and Sons, 1979.

    Google Scholar 

  8. J. J. F. Cavanagh, “Computer Science Series: Digital Computer Arithmetic,” McGraw-Hill Book Co., 1984.

    Google Scholar 

  9. M. Nagamatsu, S. Tanaka, J. Mori, T. Noguchi, and K. Hatanaka, “A 15-ns 32x32-bit CMOS Multiplier with an improved Parallel Structure,” IEEE Custom Integrated Circuits Conference, Tech. Dig., pp. 10.3.1–10.3.4, May 1989.

    Google Scholar 

  10. N. Ohkubo, M. Suziki, T. Shinbo, T. Yamanaka, A. Shimizu, K. Sasaki, and Y. Nakagome, “A 4.4-ns CMOS 54x54-b Multiplier using Pass-Transistor Multiplexer,” IEEE Custom Integrated Circuits Conference, Tech. Dig., pp. 599–602, May 1994.

    Google Scholar 

  11. R. Bechade, et al., “A 32b 66MHz Microprocessor,” IEEE International Solid-State Circuits Conference, Tech. Dig., pp. 208–209, February 1994.

    Google Scholar 

  12. C. A. Mead, and L. A. Conway, “Introduction to VLSI Systems,” Addison-Wesley, 1980.

    Google Scholar 

  13. R. W. Sherburne, et al., “Data path Design for RISC,” Proc. Conf. Advanced Research in VLSI, pp. 53–62, 1982.

    Google Scholar 

  14. R. W. Sherburne, et al., “A 32-bit NMOS Microprocessor with a Large Register File,” IEEE Journal of Solid-State Circuits, vol. SC-19, no. 5, pp. 682–689, October 1984.

    Article  Google Scholar 

  15. K. J. O’Connor, “The Twin-Port Memory Cell,” IEEE Journal of Solid-State Circuits, vol. SC-22, no. 5, pp. 712–720, October 1987.

    Article  Google Scholar 

  16. R. D. Jolly, “A 9-ns, 1.4-Gigabyte/s 17-Ported CMOS Register File,” IEEE Journal of Solid-State Circuits, vol. 26, no. 10, pp. 1407–1412, October 1991.

    Article  Google Scholar 

  17. H. Shinohara, et al., “A Flexible Multiport RAM Compiler for Data Path,” IEEE Journal of Solid-State Circuits, vol. 26, no. 3, pp. 343–349, March 1991.

    Article  Google Scholar 

  18. A. R. Linz, “A Low-Power PLA for a Signal Processor,” IEEE Journal of Solid-State Circuits, vol. 26, no. 2, pp. 107–115, February 1991.

    Article  Google Scholar 

  19. G. M. Blair, “PLA Design for Single-Clock CMOS,” IEEE Journal of Solid-State Circuits, vol. 27, no. 8, pp. 1211–12113, August 1992.

    Article  Google Scholar 

  20. H. Kadota, et al., “A 32-bit Microprocessor with On-Chip Cache and TLB,” IEEE Journal of Solid-State Circuits, vol. SC-22, no. 5, pp. 800–807, October 1987.

    Article  Google Scholar 

  21. A. J. Smith, “Cache Memories,” Computing Surveys, Vol. 14, pp. 473–530, September 1982.

    Article  Google Scholar 

  22. L. Ashby, “ASIC Clock Distribution using a Phase Locked Loop (PLL),” in IEEE International ASIC Conference and Exhibit, Tech. Dig., pp. P1.6.1–P1.6.3, September 1991.

    Google Scholar 

  23. F. M. Gardner, “Phase Lock Techniques,” John Wiley and Sons, 1979.

    Google Scholar 

  24. F. M. Gardner, “Charge-Pump Phase-Locked Loops,” IEEE Transactions on Communications, COM-28(ll), pp. 1849–1858, November 1980.

    Article  Google Scholar 

  25. R. E. Best, “Phase-Locked Loops,” McGraw Hill, 1984.

    Google Scholar 

  26. J. Goto, et al., “A Programmable Clock Generation with 50 to 350 MHz Lock Range for Video Signal Processors,” IEEE Custom Integrated Circuits Conference, Tech. Dig., pp. 4.4.1–4.4.4, May 1993.

    Google Scholar 

  27. I. A. Young, J. K. Greason, and K. L. Wong, “A PLL Clock Generator with 5 to 110 MHz of Lock Range for Microprocessors,” IEEE Journal of Solid-State Circuits, vol. 27, no. 11, pp. 1599–1607, November 1992.

    Article  Google Scholar 

  28. M. G. Johnson, and E. L. Hudson, “A Variable Delay Line PLL for CPU-Coprocessor Synchronization,” IEEE Journal of Solid-State Circuits, vol. 23, no. 5, pp. 1218–1223, October 1988.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bellaouar, A., Elmasry, M.I. (1995). VLSI CMOS Subsystem Design. In: Low-Power Digital VLSI Design. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2355-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2355-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5999-9

  • Online ISBN: 978-1-4615-2355-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics