Skip to main content

Low-Voltage Low-Power VLSI CMOS Circuit Design

  • Chapter
Low-Power Digital VLSI Design

Abstract

In this chapter we introduce the CMOS logic gate with the development of simple models for delay and power dissipation estimation. These analysis permit us to understand the mechanisms that control the performance, particularly the power dissipation, of a logic circuit. Several CMOS design styles, such as pseudo-NMOS, dynamic logic and NORA, are presented. Other circuit variations of the static complementary CMOS, which are suitable for low-power applications, are discussed. These include the pass-transistor logic families such as Complementary Pass-transistor Logic (CPL), Dual Pass-transistor Logic (DPL), and Swing Restored Pass-transistor Logic (SRPL). Also an overview of clocking strategy in VLSI systems is covered. Included in this chapter is one important area which is the I/O circuits. The power dissipation of the I/O circuits is also analyzed. Finally, low-power techniques for CMOS design are also reviewed at the transistor-level. We will cover the low-power issues at subsystem/system/architecture levels in Chapter 6, 7 and 8 in more detail. Several books treat in detail other CMOS circuit design aspects [1, 2, 3]. The reader can refer to them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. H. E. Weste and K. Eshraghian, “Principles of CMOS VLSI Design: A Systems Perspective,” second edition, Addison-Wesley, Reading, MA, 1993.

    Google Scholar 

  2. J. P. Uyemura, “Circuit Design for CMOS VLSI,” Springer Science+Business Media New York, Norwell, MA, 1992.

    Book  Google Scholar 

  3. M. I. Elmasry, “Digital MOS Integrated Circuits II”, IEEE Press Book, 1993.

    Google Scholar 

  4. R. M. Swanson and J. D. Meindl, “Ion-Implanted Complementary MOS Transistors in Low-Voltage Circuits”, IEEE J. Solid-State Circuits, vol. 7, no. 2, pp. 146–153, April 1972.

    Article  Google Scholar 

  5. H. J. M. Veendrick, “Short-Circuit Dissipation of Static CMOS Circuitry and Its Impact on the Design of Buffer Circuits,” IEEE J. Solid-State Circuits, vol. 19, no. 4, pp. 468–473, August 1984.

    Article  Google Scholar 

  6. S. M. Kang, “Accurate Simulation of Power Dissipation in VLSI Circuits,” IEEE J. Solid-State Circuits, vol. 21, no. 5, pp. 889–891, October 1986.

    Article  Google Scholar 

  7. G. J. Fisher, “An Enhanced Power Meter for SPICE2 Circuit Simulation,” EEE Trans. Computer-Aided Design, vol. 7, pp. 641–643, May 1988.

    Article  Google Scholar 

  8. G. Y. Yacoub and W. H. Ku, “An Enhanced Technique for Simulating Short-Circuit Power Dissipation,” IEEE J. Solid-State Circuits, vol. 24, no. 3, pp. 844–847, June 1989.

    Article  Google Scholar 

  9. N. Meijs, and J. T. Fokkema, “VLSI Circuit Reconstruction From Mask Topology,” Integration, vol. 2, no. 2, pp. 85–119, 1984.

    Google Scholar 

  10. D. V. Heinbruch, “CMOS3 CeU Library,” Addison-Wesley, Reading, MA, 1988.

    Google Scholar 

  11. R. J. Landers, and S. Mahant-Shetti, “Multiplexer-Based Architecture for High-Density, Low-Power Gate Arrays,” in Symposium on VLSI Circuits, Tech. Dig., Honolulu, pp. 33–34, June 1994.

    Google Scholar 

  12. M. L Elmasry, “Digital MOS Integrated Circuits I”, IEEE Press Book, 1981.

    Google Scholar 

  13. R. H. Krambeck, C. M. Lee and H-F S. Law, “High Speed Compact Circuits with CMOS”, IEEE J. SoHd-State Circuits, vol. 17, no. 3, pp. 614–619, June 1982.

    Article  Google Scholar 

  14. V. Friedman and S. Liu, “Dynamic Logic CMOS Circuits”, IEEE J. Solid-State Circuits, vol. 19, no. 2, pp. 263–266, April 1984.

    Article  Google Scholar 

  15. N. F. Gonclaves and H. J. DeMan, “NORA: a Race Free Dynamic CMOS Technique for Pipelined Logic Structures” IEEE J. Solid-State Circuits, vol. 18, no. 3, pp. 261–266, June 1983.

    Article  Google Scholar 

  16. C. M. Lee and E. W. Szeto, “Zipper CMOS,” IEEE Circuits and Devices Mag., vol. 2, no. 3, pp. 10–17, May 1986.

    Article  Google Scholar 

  17. N. Weste and K. Eshraghian, “Principles of CMOS VLSI Design: A Systems Perspective,” Addison-Wesley, Reading, MA, 1985.

    Google Scholar 

  18. F. Lu and H. Samueli, “A 200-MHz CMOS Pipelined Multiplier-Accumulator Using a Quasi-Domino Dynamic Full-Adder Cell Design,” IEEE J. Solid-State Circuits, vol. 28, no. 2, pp. 123–132, February 1993.

    Article  Google Scholar 

  19. J. Yuan and C. Svenson, “High-Speed CMOS Circuit Technique,” IEEE J. Solid-State Circuits, vol. 24, no. 1, pp. 62–71, February 1989.

    Article  Google Scholar 

  20. M. Afghahi and C. Svensson, “A Unified Single-Phase Clocking Scheme for VLSI Systems,” IEEE J. Solid-State Circuits, vol. 25, no. 1, pp. 225–233, February 1990.

    Article  Google Scholar 

  21. D. W. Dobberpuhl et al., “A 200-MHz 64-b Dual-Issue CMOS Microprocessor”, IEEE J. Solid-State Circuits, vol. 27, no. 11, pp. 1555–1567, November 1992.

    Article  Google Scholar 

  22. H. B. Bakoglu, “Circuits, Interconnects, and Packaging for VLSI,” Addison Wesley, Reading, MA, 1990.

    Google Scholar 

  23. K. Yano, et al., “A 3.8-ns CMOS 16x16 Multiplier Using Complementary Pass-Transistor Logic”, IEEE J. Solid-State Circuits, vol. SC-25, no. 2, pp. 388–394, April 1990.

    Article  Google Scholar 

  24. M. Suziki, et al., “A 1.5-ns 32-b CMOS ALU in Double Pass-Transistor Logic”, IEEE J. Solid-State Circuits, vol. SC-28, no. 11, pp. 1145–1151, November 1993.

    Article  Google Scholar 

  25. A. Parameswar, H. Hara, and T. Sakurai, “A High-Speed, Low-Power, Swing Restored Pass-Transistor Logic Based Multiply and Accumulate Circuit for Multimedia Applications,” IEEE Custom Integrated Circuits Conference, Tech. Dig., San Diego, CA, pp. 278–281, May 1994.

    Google Scholar 

  26. L. A. Glasser and D. W. Dobberpuhl, “The Design and Analysis of VLSI Circuits”, Addison-Wesley, Reading, MA, 1985.

    Google Scholar 

  27. T. Kobayashi et al., “A Current-Controlled Latch Sense Amplifier and a Static Power-Saving Input Buffer for Low-Power Architecture”, IEEE J. Solid-State Circuits, vol. SC-28, no. 4, pp. 523–527, April 1993.

    Article  Google Scholar 

  28. M. S. J. Steyaert, et al., “ECL-CMOS and CMOS-ECL Interface in 1.2-µm CMOS for 150-MHz Digital ECL Data Transmission Systems”, IEEE J. Solid-State Circuits, vol. SC-26, no. 1, pp. 18–24, January 1991.

    Article  Google Scholar 

  29. C. Mead and L. Conway, “Introduction to VLSI Systems”, Addison-Wesley, Reading, MA, 1980.

    Google Scholar 

  30. N. C. Li, G. L. Haviland and A. A. Tuszynski, “CMOS Tapered Buffer”, IEEE J. Solid-State Circuits, vol. SC-25, no. 4, pp. 1005–1008, August 1990.

    Article  Google Scholar 

  31. M. Nemes, “Driving Large Capacitances in MOS LSI Systems”, IEEE J. Solid-State Circuits, vol. SC-19, no. 1, pp. 159–161, February 1984.

    Article  Google Scholar 

  32. N. Hedenstierna and K. O. Jeppson, “CMOS Circuit Speed and Buffer Optimization”, IEEE Trans. Computer-Aided Design, vol. CAD-6, no. 2, pp. 276–281, March 1987.

    Google Scholar 

  33. A. J. Al-Khalili, Y. Zhu and D. Al-Khalili, “A Module Generator for Optimized CMOS Buffer”, IEEE Trans. Computer-Aided Design, vol. CAD-9, no. 10, pp. 1028–1046, October 1990.

    Article  Google Scholar 

  34. S. R. Vemuru and A. R. Thorbjornsen, “Variable-Taper CMOS Buffer”, IEEE J. Solid-State Circuits, vol. SC-26, no. 9, pp.1265–1269, September 1991.

    Article  Google Scholar 

  35. J. Burkis, “Clock Tree Synthesis for High Performance ASICs”, in IEEE ASIC Intern. Conf. and Exhibit, Rochester, NY, pp. P9–8.1–P9–8.3, September 1991.

    Google Scholar 

  36. P.D. Taand and K. Do, “A Low-Power Clock Distribution Scheme for Complex I? System”, in IEEE ASIC Intern. Conf. and Exhibit, Rochester, NY, pp. P1–5.1–P1–5.4, September 1991.

    Google Scholar 

  37. H. Kojima, S. Tanaka, and K. Sasaki, “ Half-Swing Clocking Scheme for 75% Power Saving in Clocking Circuitry,” Symposium on VLSI Circuits, Tech. Dig., Honolulu, pp. 23–24, June 1994.

    Google Scholar 

  38. J. S. Caravella and J. H. Quigley, “Three Volt to Five Volt Interface Circuit with Device Leakage Limited DC Power Dissipation”, in IEEE ASIC Intern. Conf. and Exhibit, Rochester, NY, pp. 448–451, September 1993.

    Google Scholar 

  39. M. Shoji, “CMOS Digital Circuit Technology”, Prentice Hall Inc., Englewood Cliffs, NJ., 1988.

    Google Scholar 

  40. F. Abu-Nofal et al., “A Three-Million Transistor Microprocessor”, in IEEE International Solid-State Circuits Conf., pp. 108–109, February 1992.

    Google Scholar 

  41. T. Gabara and D. Thompson, “Ground Bounce Control in CMOS Integrated Circuits”, in IEEE International Solid-State Circuits Conf., pp. 88–89, February 1988.

    Google Scholar 

  42. T. Gabara, “Ground Bounce Control and Improved Latch-up Suppression Through Substrate Conduction”, IEEE J. Solid-State Circuits, vol. 23, no. 5, pp. 1224–1232, October 1988.

    Article  Google Scholar 

  43. M. Hashimoto and O-K. Kwon, “Low dI/dt Noise and Refletion Free CMOS Signal Driver”, in IEEE Custom Integrated Circuits Conf., Tech. Dig., pp. 14.4.1–14.4.4, 1989.

    Google Scholar 

  44. T. Wada, M. Eino and K. Anami, “ Simple Noise Model and Low-Noise Data-Output Buffer for Ultra-High-Speed Memories”, IEEE J. Solid-State Circuits, vol. 25, no. 6, pp. 1586–1588, December 1990.

    Article  Google Scholar 

  45. R. Senthinathan and J. L. Prince, “Application Specific CMOS Output Driver Circuit Design Techniques to Reduce Simultaneous Switching Noise”, IEEE J. Solid-State Circuit, vol. 28, no. 12, pp. 1383–1388, December 1993.

    Article  Google Scholar 

  46. T. Knight and A. Krymm, “A Self-Terminating Low-Voltage-Swing CMOS Output Driver”, IEEE J. Solid-State Circuits, vol. 23, no. 2, pp. 457–464, April 1988.

    Article  Google Scholar 

  47. H-J. Schumacher, J. Dikken and E. Seevinck, “CMOS Subnanosecond True-ECL Output Buffer”, IEEE J. Solid-State Circuits, vol. 25, no. 1, pp. 150–154, February 1990.

    Article  Google Scholar 

  48. M. Pedersen and P. Metz, “A CMOS to 100K ECL Interface Circuit”, in IEEE International Solid-State Circuits Conf., Tech. Dig., pp. 226–227, February 1989.

    Google Scholar 

  49. J. Martinez, “BTL Transceivers Enable High-Speed Bus Design”, EDN, August 1992.

    Google Scholar 

  50. B. Gunning, L. Yuan, T. Nguyen and T. Wong, “A CMOS Low-Voltage-Swing Transmission-Line Transceiver”, in IEEE International Solid-State Circuits Conf., Tech. Dig., pp. 58–59, February 1992.

    Google Scholar 

  51. J. H. Quigley, J. S. Caravella and W. J. Neil, “Current Mode Transceiver Logic (CMTL) for Reduced Swing CMOS, Chip to Chip Communication”, in IEEE International ASIC Conference and Exhibit, Rochester, NY, Tech. Dig., pp. 452–457, September 1993.

    Google Scholar 

  52. M. Kakumu, “Process and Device Technologies of CMOS Devices for Low-Voltage Operation,” IEICE Trans. Electron., Vol. E76-C, No. 5, pp. 672–680, May 1993.

    Google Scholar 

  53. T. Kawahara et al., “Subthreshold Current Reduction for Decoded-Driver by Self-Reverse-Biasing,” IEEE J. Solid-State Circuits, vol. 28, no. 11, pp. 1136–1144, November 1993.

    Article  Google Scholar 

  54. S. Mutoh et al., “1 V High-Speed Digital Circuit Technology with 0.5-µm Multi-Threshold CMOS,” in IEEE International ASIC Conference and Exhibit, Rochester, NY, Tech. Dig., pp. 186–189, September 1993.

    Google Scholar 

  55. M. Horiguchi et al., “SSI CMOS Circuit for Low-Standby Subthreshold Current Giga-Scale LSI’s”, IEEE J. of Solid-State Circuits, Vol. 28, No. 11, pp. 1131–1135 November 1993.

    Article  Google Scholar 

  56. R. W. Badeau et al., “A 100-MHz Macropipelined VAX Microprocessor,” IEEE J. Solid-State Circuits, vol. 27, no. 11, pp. 1585–1597, November 1992.

    Article  Google Scholar 

  57. R. Brodersen, A. Chandrakasan and S. Sheng, “Design Techniques for Portable Systems”, in IEEE International Solid-State Circuits Conf., Tech. Dig., pp. 168–169, February 1993.

    Google Scholar 

  58. Y. Nakagome et al., “Sub-1-V Swing Internal Architecture for Future Low-Power ULSPs,” IEEE J. Solid-State Circuits, vol. 28, no. 4, pp. 414–419, April 1993.

    Article  Google Scholar 

  59. A. Bellaouar, I. S. Abu-Khater, and M. I. Elmasry, “Low-Power CMOS/BiCMOS Drivers and Receivers for On-Chip Interconnects,” IEEE J. Solid-State Circuits, vol. 30, no.l, May 1995.

    Google Scholar 

  60. A. Chandrakasan et al., “Low-Power CMOS Digital Design”, IEEE J. Solid-State Circuits, vol. 2, no. 4, pp. 473–484, April 1992.

    Article  Google Scholar 

  61. L. J. Svensson, and J. G. Roller, “Driving a Capacitive Load without Dissipating fCV 2,” IEEE Symposium on Low Power Electronics, Tech. Dig., San-Diego, pp. 100–101, October 1994.

    Google Scholar 

  62. T. Gabara, “Pulsed Power Supply CMOS-PPS CMOS,” IEEE Symposium on Low Power Electronics, Tech. Dig., San-Diego, pp. 98–99, October 1994.

    Google Scholar 

  63. J. S. Denker, “A Review of Adiabatic Computing,” IEEE Symposium on Low Power Electronics, Tech. Dig., San-Diego, pp. 94–97, October 1994.

    Google Scholar 

  64. M. Horowitz, T. Indermaur, and R. Gonzalez, “Low-Power Digital Design,” IEEE Symposium on Low Power Electronics, Tech. Dig., San-Diego, pp. 8–11, October 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bellaouar, A., Elmasry, M.I. (1995). Low-Voltage Low-Power VLSI CMOS Circuit Design. In: Low-Power Digital VLSI Design. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2355-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2355-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5999-9

  • Online ISBN: 978-1-4615-2355-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics