Skip to main content

Axiperiodic Solutions

  • Chapter
  • First Online:
Finite Element Analysis of Electrical Machines

Part of the book series: Power Electronics and Power Systems ((PEPS))

  • 727 Accesses

Abstract

Electromagnetic analysis of the end region must include three dimensional effects. In the previous chapters we have treated problems in which there was one component of current and two components of flux density. In the end region of most electrical machines the flux density will generally have three components and the currents two or three components depending on the geometry and the coordinate system chosen. Instead of a full three dimensional analysis, we can often solve a quasi-three dimensional problem called axiperiodic. Axiperiodic solutions give all three components of the magnetic field and yet we solve only a two dimensional problem. We need only mesh a two dimensional region and solve for a set of unknowns on a single plane. Axiperiodic analysis is possible in cases where the field behavior or distribution is specified in one of the coordinate directions. The idea is similar to ones we have previously used. When analyzing the cross section of machines we saw that by taking advantage of the periodic nature of the field in some machines, we could, by using periodic or anti-periodic boundary conditions, reduce the size of the problem and solve for one or two pole pitches instead of the entire cross section. The axiperiodic formulation is applicable in cases where the geometry is axisymmetric and the fields are periodic in the θ direction. As we will see, this type of analysis is especially useful in the end regions of rotating machines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. D. S. Burnett. Finite Element Analysis: From Concepts to Applications. Addison-Wesley Publishing Company, Reading, Mass., 1987.

    MATH  Google Scholar 

  2. O. C. Zienkiewicz. The Finite Element Method in Engineering Science. McGraw Hill, London, 1971.

    MATH  Google Scholar 

  3. P. P. Silvester and R. L. Ferrari. Finite Elements for Electrical Engineers. Cambridge University Press, Cambridge England, 1983.

    MATH  Google Scholar 

  4. S. R. H. Hoole. Computer-Aided Analysis and Design of Electromagnetic Devices. Elsevier, New York, Amsterdam, London, 1989.

    Google Scholar 

  5. D. A. Lowther and P. P. Silvester. Computer Aided Design in Magnetics. Springer Verlag, New York, 1986.

    MATH  Google Scholar 

  6. S. J. Salon and J. D’Angelo. Applications of the hybrid finite element - boundary element method in electromagnetics. IEEE Transactions on Magnetics, MAG-24(l):80–85, 1988.

    Google Scholar 

  7. M. V. K. Chari and P. Silvester. Analysis of turbo-alternator magnetic fields by finite elements. IEEE Trans. PAS, PAS-90:454–464, 1971.

    Google Scholar 

  8. M. V. K. Chari. Introduction to finite elements. Workshop on Finite Elements in Electromagnetics, Rensselaer Polytechnic Institute, 1990.

    Google Scholar 

  9. Peter Campbell. Permanent Magnet Materials and Their Application. Cambridge University Press, Cambridge, 1994.

    Google Scholar 

  10. R. J. Parker and R. J. Studders. Permanent Magnets and Their Application. John Wiley and Sons, Inc., New York, 1962.

    Google Scholar 

  11. D. C. Hanselman. Brushless Permanent-Magnet Motor Design. McGraw Hill, Inc., 1994.

    Google Scholar 

  12. N. A. O. Demerdash. Permanent magnets and machines. Workshop on Finite Elements in Electromagnetics, Rensselaer Polytechnic Institute, 1990.

    Google Scholar 

  13. F. A. Fouad, T. W. Nehl, and N. A. Demerdash. Permanent magnet modeling for use in vector potential finite element analysis in electrical machinery. IEEE Transactions on Magnetics, MAG-17:3002–3004, 1981.

    Google Scholar 

  14. H. M. McConnel. Eddy current phenomena in ferromagnetic materials. AIEE Transactions, pages 226–233, July 1954.

    Google Scholar 

  15. P. D. Agarwal. Eddy current losses in solid and laminated iron. AIEE Transactions, 78:169–171, 1959.

    Google Scholar 

  16. MAGSOFT Corporation. FLUX2D User Guide. MAGSOFT-CEDRAT, Troy, New York, 1995.

    Google Scholar 

  17. N. A. Demerdash and D.H. Gillott. A new approach for determination of eddy currents and flux penetration in non-linear ferromagnetic material. IEEE Transactions on Magnetics, 74:682–685, 1974.

    Google Scholar 

  18. S. J. Salon and H. B. Hamilton. Calculation of induced field current and voltage in solid rotor turbine generators. IEEE Transactions on PAS,PAS-97:1918–1924, 1978.

    Google Scholar 

  19. Levant Ovacik. Coupling eddy current analysis to circuits. Masters Project, Rensselaer Polytechnic Institute, 1992.

    Google Scholar 

  20. G. W. Carter. The Electromagnetic Field in its Engineering Aspect. Longmans, Green and Co., London, New York, Toronto, 1954.

    Google Scholar 

  21. S. L. Quick and G. D. Hoover. Large steam turbine generator technology trends. Westinghouse Steam Turbine Generator Technology Symposium, 1978.

    Google Scholar 

  22. A. Konrad. The numerical solution of steady state skin effect problems an integrrodifferential approach. IEEE Transactions on Magnetics, MAG-17(1):1148–1152, 1981.

    Google Scholar 

  23. I. D. Mayergoyz. Mathematical Models of Hysteresis. Springer-Verlag, 1991.

    MATH  Google Scholar 

  24. Robert J. Nevins. Extra High Voltage Shunt Reactor Loss Calculation By The Finite Element Method.PhD thesis, Rensselaer Polytechnic Institute, Troy, New York, 1986.

    Google Scholar 

  25. S.J. Salon and H. B. Hamilton. The application of poynting’s vector to the determination of synchronous machine impedances. IEEE Transactions on PAS,PAS-99(4):1442–1447, 1979.

    Google Scholar 

  26. Thomas W. Nehl and Nabeel Demerdash. Finite element state space modeling environments for electric motor drives. IEEE Tutorial on Adjustable Speed Drives, 92 EHO 362–4-PWR:109–126, 1992.

    Google Scholar 

  27. C. J. Carpenter. Surface Integral Methods of Calculating Forces on Magnetized Iron Parts. IEE Monograph No. 342, London, 1959.

    Google Scholar 

  28. Mark J. DeBortoli. Extensions to the Finite Element Method for the Electromechanical Analysis of Electric Machines. PhD thesis, Rensselaer Polytechnic Institute, Troy, New York, 1992.

    Google Scholar 

  29. Gilbert Reyne. Analyse Théorique et Expérimentale des Phénomènes Vibratoire d’Origine Electromagnétique. PhD thesis, INPG, Grenoble, France, 1987.

    Google Scholar 

  30. J. Stratton. Electromagnetic Theory. McGraw Hill, New York, 1941.

    MATH  Google Scholar 

  31. J. L. Coulomb. A methodology for the determination of global electromechanical quantities from a finite element analysis and its application to the evaluation of magnetic forces, torque and stiffness. IEEE Transactions on Magnetics, MAG-19(6):2514–2519, 1983.

    Google Scholar 

  32. J. L. Coulomb and G. Meunier. Finite element implementation of virtual work principle for magnetic or electric force and torque computation. IEEE Transactions on Magnetics, MAG-20(5):1894–1896, 1984.

    Google Scholar 

  33. Basim Istfan. Extensions to the Finite Element Method for Nonlinear Magnetic Field Problems.PhD thesis, Rensselaer Polytechnic Institute, Troy, New York, 1987.

    Google Scholar 

  34. J. Penman and M. D. Grieves. Efficient calculation of force in electromagnetic devices. Proceedings of the IEE, 133(4, Part B):212–216, 1986.

    Google Scholar 

  35. G. Hennenberger, P. Sattler, and D. Shen. Force calculation with analytical accuracy in the finite element based computational magnetostatics. IEEE Transactions on Magnetics, MAG-27(5):4254–4257, 1991.

    Google Scholar 

  36. P. Silvester and M. V. K. Chari. Finite element solution of saturable magnetic field problems. IEEE Transactions on PAS, PAS-89:1642–1651, 1970.

    Google Scholar 

  37. N. A. O. Demerdash. Computerized Magnetic Field Performance Calculation of Turbo-Generators With Asymmetrical and Symmetrical Rotors. PhD thesis, University of Pittsburgh, Pittsburgh, Pennsylvania, 1971.

    Google Scholar 

  38. E. A. Erdelyi, M. S. Sarma, and S. S. Coleman. Magnetic fields in nonlinear salient pole alternators. IEEE Transactions on PAS, PAS-87:1848–1856, 1968.

    Google Scholar 

  39. J. R. Smith, K. J. Binns, S. Williamson, and G. W. Buckley. Determination of saturated reactances of turbogenerators. IEE Proceedings - C, 127(3):122–128, May 1980.

    Google Scholar 

  40. A. Y. Hannalla and D. C. MacDonald. Sudden three phase short circuit characteristics of turbine generators from design data using electromagnetic field calculations. IEE Proceedings - C,127(4):213–220, 1980.

    Google Scholar 

  41. D. C. MacDonald, A. B. J. Reece, and P. J. Turner. Turbine generator steady state reactances. IEE Proceedings - C, 132(3): 101–108, May 1985.

    Google Scholar 

  42. Westinghouse Electric Corporation. Electrical Transmission and Distribution Reference Book. Westinghouse Electric, 1964.

    Google Scholar 

  43. L. A. Kilgore. Calculation of synchronous machine constants - reactances and time constants affecting transient characteristics. AIEE Transactions, 50:1201–1214, 1931.

    Google Scholar 

  44. C. Concordia. Synchronous Machines: Theory and Performance. General Electric Company, Schenectady, New York, 1951.

    Google Scholar 

  45. P. L. Alger. Induction Machines: Their Behavior and Uses. Gordan and Breach, New York, 1970.

    Google Scholar 

  46. Electric Power Research Institute. Derivation of induction motor models from standstill frequency response tests. EPRI Report EL-6250.

    Google Scholar 

  47. A. A. Abdel-Razek, J. L. Coulomb, M. Féliachi, and J. C. Sabonnadière. A conception of an air-gap element for the dynamic analysis of the electromagnetic field in electric machines. IEEE Transactions on Magnetics,MAG-18(2):655–659, 1982.

    Google Scholar 

  48. Féliachi, M. J. L. Coulomb, and H. Mansir. Second order air-gap element for the dynamic finite-element analysis of the electromagnetic field in electric machines. IEEE Transactions on Magnetics, MAG-19(6):2300–2303, 1983.

    Google Scholar 

  49. K. S. Lee, M. J. DeBortoli, M. J. Lee, and S. J. Salon. Coupling of finite elements and analytical solutions in the air-gap of electrical machines. IEEE Transactions on Magnetics, 27(5):3955–3957, 1991.

    Google Scholar 

  50. Miloš Štafl. Electrodynamics of Electrical Machines. Iliffe Books, Ltd., London, 1967.

    Google Scholar 

  51. J. A. Tegopolous. Current sheet equivalent to end-winding currents of turbine generator stator and rotor. IEEE Transactions on PAS, 81:695–705, 1963.

    Google Scholar 

  52. Kent Davey and Dennis Pavlik. A three dimensional scalar field solution and its application to the turbine generator end region. Westinghouse Electric Corporation, Engineering Memo 729, 1976.

    Google Scholar 

  53. K. R. Davey and E. I. King. A three dimensional scalar potential field solution and its application to the turbine generator end region. IEEE Transactions on PAS, 85:124–133, 1966.

    Google Scholar 

  54. C.J. Carpenter. Theory and applications of magnetic shells. Proceedings of IEE, 114(7):995–1000, 1967.

    Google Scholar 

  55. J. A. Tegopolous. Determination of the magnetic field in the end zone of turbine generators. IEEE Transactions on PAS, 82:562–572, 1965.

    Google Scholar 

  56. J. A. Tegopolous. Forces on the end windings of turbine generators i - determination of flux densities. IEEE Transactions on PAS, 85:114–123, 1966.

    Google Scholar 

  57. J. A. Tegopolous. Forces on the end windings of turbine generators ii - determination of forces. IEEE Transactions on PAS, 85:124–133, 1966.

    Google Scholar 

  58. D. Harrington. Forces on machine end turns. AIEE Transactions, 71:849–858, 1952.

    Google Scholar 

  59. J. F. Calvert. Forces on turbine generator stator windings. AIEE Transactions, 50:178–186, 1931.

    Google Scholar 

  60. S. J. Salon, D J. Scott, and G. L. Kusik. Electromagnetic forces on the end windings of large turbine generators I - steady state conditions. IEEE Transactions on PAS, Paper 81 SM 379–7, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Salon, S.J. (1995). Axiperiodic Solutions. In: Finite Element Analysis of Electrical Machines. Power Electronics and Power Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4615-2349-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2349-9_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-5996-8

  • Online ISBN: 978-1-4615-2349-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics