Advertisement

Codes for Other Channels

Chapter
  • 93 Downloads
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 335)

Abstract

We showed in (2.11) that for any codeC we have
$${{P}_{{ue}}}(C,{{Z}_{p}}) = \frac{1}{{\# C}}\sum\limits_{{\bar{x} \in C}} {\sum\limits_{{\mathop{{\bar{y} \in C}}\limits_{{\bar{y} < \bar{x}}} }} {{{p}^{{{{w}_{H}}(\bar{x}) - {{w}_{H}}(\bar{y})}}}{{{(1 - p)}}^{{{{w}_{H}}(\bar{y})}}}} .}$$
(4.1)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  1. 1.Department of InformaticsUniversity of BergenBergenNorway
  2. 2.St. Petersburg University of TelecommunicationsSt. PetersburgRussia

Personalised recommendations