The development of algorithms for the computation of projected dynamical systems is a topic equal in importance to that of the exploration of qualitative questions of existence, uniqueness, and stability.


Variational Inequality Projection Method Linear Programming Problem Variational Inequality Problem Gradient Projection Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alber, Y. I, “On the solution of equations and variational inequalities with maximal monotone operators,” Soviet Mathemtics Doklady 20 (1979) 871–876.Google Scholar
  2. Armijo, L., “Minimization of functions having continuous partial derivatives,” Pacific Journal of Mathematics 16 (1966) 1–3.Google Scholar
  3. Aubin, J. P., and Cellina, A., Differential Inclusions, Springer-Verlag, Berlin, Germany, 1984.CrossRefGoogle Scholar
  4. Auslender, A., Optimization: Methods Numeriques, Mason, Paris, France, 1976.Google Scholar
  5. Bakusinskii, A. B., and Polyak, B. T., “On the solution of variational inequalities,” Soviet Mathematics Doklady 15 (1974) 1705–1710.Google Scholar
  6. Bayer, D. A., and Lagarias, J. C, “The nonlinear geometry of linear programming I, II,” Transactions of the American Mathematical Society 314 (1989) 499–580.Google Scholar
  7. Bertsekas, D. P., “On the Goldstein-Levitin-Polyak gradient projection method,” IEEE Transactions on Automatic Control 21 (1976) 174–184.CrossRefGoogle Scholar
  8. Bertsekas, D. P., and Tsitsiklis, J. N., Parallel and Distributed Computation, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1989.Google Scholar
  9. Bloch, A. M., “Steepest descent, linear programming and Hamiltonian flows,” Contemporary Mathematics 114 (1990) 77–88.CrossRefGoogle Scholar
  10. Brockett, R. W., “Dynamical systems that sort lists, diagonalize matrices and solve linear programming problems,” Linear Algebra and its Applications 146 (1991) 79–91.CrossRefGoogle Scholar
  11. Cauchy, A., “Memoire sur l’integration des equations differentielles,” Oeuvres Completes II serie 11 (1840) 399–465.Google Scholar
  12. Collatz, L., The Numerical Treatment of Differential Equations, third edition, Springer-Verlag, Berlin, Germany, 1960.CrossRefGoogle Scholar
  13. Conte, S. D., and de Boor, C, Elementary Numerical Analysis: An algorithmic Approach, third edition, McGraw-Hill, New York, 1980.Google Scholar
  14. Dafermos, S., “Traffic equilibrium and variational inequalities,” Transportation Science 14 (1980) 42–54.CrossRefGoogle Scholar
  15. Dafermos, S., “An iterative scheme for variational inequalities,” Mathematical Programming 26 (1983) 40–47.CrossRefGoogle Scholar
  16. Dupuis, P., “Large deviations analysis of reflected diffusions and constrained stochastic approximation algorithms in convex sets,” Stochastics 21 (1987) 63–96.CrossRefGoogle Scholar
  17. Dupuis, P., and Kushner, H. J., “Stochastic approximation and large deviations: Upper bounds and w.p. 1 convergence,” SIAM Journal on Control and Optimization 27 (1989) 1108–1135.CrossRefGoogle Scholar
  18. Dupuis, P., and Nagurney, A., “Dynamical systems and variational inequalities,” Annals of Operations Research 44 (1993) 9–42.CrossRefGoogle Scholar
  19. Dupuis, P., and Williams, R. J., “Lyapunov functions for semimartingale reflected Brownian motions,” The Annals of Probability 22 (1994) 680–702.CrossRefGoogle Scholar
  20. Euler, L., Opera Omnia, Series Prima, 11, Leipzig and Berlin, Germany, 1913.Google Scholar
  21. Euler, L., Opera Omnia, Series Prima, 12, Leipzig and Berlin, Germany, 1914.Google Scholar
  22. Faybusovich, L. E., “Hamiltonian structure of dynamical systems which solve linear programming problems,” Physica D53 (1991) 217–232.Google Scholar
  23. Flam, S. D., “On finite convergence and constraint identification of sub-gradient projection methods,” Mathematical Programming 57 (1992a) 427–437.CrossRefGoogle Scholar
  24. Flam, S. D., “Solving convex programs by means of ordinary differential equations,” Mathematics of Operations Research 17 (1992b) 290–302.CrossRefGoogle Scholar
  25. Fukushima, M., “A relaxed projection method for variational inequalities,” Mathematical Programming 35 (1986) 58–70.CrossRefGoogle Scholar
  26. Garcia, C. B., and Zangwill, W. I., Pathways to Solutions, Fixed Points, and Equilibria, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1981.Google Scholar
  27. Gear, C. W., Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1971.Google Scholar
  28. Glowinski, R., Lions, J. L., and Tremolieres, R., Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam, The Netherlands, 1981.Google Scholar
  29. Goldstein, A. A., “Convex programming in Hilbert space,” Bulletin of the American Mathematical Society 70 (1964) 709–710.CrossRefGoogle Scholar
  30. Henrici, P., Discrete Variable Methods in Ordinary Differential Equations, John Wiley & Sons, Inc., New York, 1962.Google Scholar
  31. Heun, K., “Neue methode zur approximativen integration der differentialgleichungen einer unabhangigen veranderlichen,” Zeitschrift fur Angewandte Mathematik und Physik 45 (1900) 23–38.Google Scholar
  32. Kinderlehrer, D., and Stampacchia, G., An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980.Google Scholar
  33. Kushner, H. J., and Clark, D. S., Stochastic Approximation Methods for Constrained and Unconstrained Systems, Springer-Verlag, New York, 1978.CrossRefGoogle Scholar
  34. Kutta, W., “Beitrag zur naherungsweisen integration totaler differentialgleichungen,” Zeitschrift fur Angewandte Mathematik und Physik 46 (1901) 435–453.Google Scholar
  35. Lambert, J. D., Computational Methods in Ordinary Differential Equations, John Wiley & Sons, Inc., New York, 1973.Google Scholar
  36. Nagurney, A., Network Economics: A Variational Inequality Approach, Kluwer Academic Publishers, Boston, Massachusetts, 1993.CrossRefGoogle Scholar
  37. Runge, C, “Ueber die numerische auflosung von differentialgleichungen,” Mathematischen Annalen 46 (1895) 167–178.CrossRefGoogle Scholar
  38. Smale, S., “A convergence process of price adjustment and global Newton methods,” Journal of Mathematical Economics 3 (1976) 107–120.CrossRefGoogle Scholar
  39. Watson, L. T., “Solving the nonlinear complementarity problem by a homotopy method,” SIAM Journal on Control and Optimization 17 (1979) 36–46.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Anna Nagurney
    • 1
  • Ding Zhang
    • 1
  1. 1.School of ManagementUniversity of MassachusettsAmherstUSA

Personalised recommendations