Force, Displacement, and Acceleration Sensors

  • A. Garcia-Valenzuela
  • M. Tabib-Azar
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 332)


This chapter discusses fiber optic and integrated optic sensor concepts. Force, displacement, and acceleration sensors are closely related. A displacement sensor may be used as a force sensor if we know precisely the mechanical constants of the sensor. A force sensor always implies displacement (even if this is not of interest and it may be extremely small). The relation between force and displacement in a force or displacement sensor depends on the sensor.


Cantilever Beam Force Sensor Displacement Sensor Single Mode Fiber Fiber Optic Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Schonenberger and S. F. Alvarado, “A Differential Interferometer for Force Microscopy.” Rev. Sci. Instrum. Vol. 60 (10), p.p.3131–3134 (1989).CrossRefGoogle Scholar
  2. 2.
    R. Erlandsson, G. M. McClelland, C. M. Mate and S. Chiang, “Atomic Force Microscopy sing Optical Interferometry.” J. Vac. Sci. Technol. A 6 (2), p.p.266–270 (1988).CrossRefGoogle Scholar
  3. 3.
    Y. Martin, C. C. Williams and H. K. Wickramasinghe, “Atomic Force Microscope-Force Mapping and Profiling on a Sub 100-A Scale.” J. Appl. Phys. 61 (10), p.p.4723–4729 (1987).CrossRefGoogle Scholar
  4. 4.
    R. M. DeLaRue, R. F. Humphryes, I. M. Mason and E. A. Ash Proc. IEEE 119, p. 117 (1972).Google Scholar
  5. 5.
    C. A. Putman, B. G. De Grooth, N. F. Van Hulst, and J. Greve, “A detailed analysis of the optical beam deflection technique for use in atomic force microscopy.” J. Appl. Phys. Vol. 72 (1), p.p. 6–12 (1992).CrossRefGoogle Scholar
  6. 6.
    A. D. Kersey, F. Bucholtz, K. Sinansky and A. Dandridge, “Interferometric Sensors for DC Measurands-A new class of fiber sensors.” Fiber Optic and Laser Sensors IV, Ramon P. De Paula, Eric Udd, Editors, Proc. SPIE Vol. 718, p.p. 198--202 (1987).CrossRefGoogle Scholar
  7. 7.
    N. Lagakos, and J. A. Bucaro, “Optimizing Fiber Optic Microbend Sensors.” Fiber Optic and Laser Sensors IV, Ramon P. De Paula, Eric Udd, Editors, Proc. SPIE Vol. 718, p.p. 12–20 (1987).CrossRefGoogle Scholar
  8. 8.
    A. Garcia-Valenzuela, and M. Tabib-Azar, “Fiber Optic Force and Displacement Sensor based on Speckle Detection with 0.1 Nano-Newton and 0.1 Angstrom Resolution.” Sensors and Actuators A. Physical, Vol. 36 (3), p.p.199–208 (1993).CrossRefGoogle Scholar
  9. 9.
    Ura, T. Suhara, and H. Nishiara, “Integrated-Optic interferometer Position Sensor”, Journal of Lightwave Technology, Vol. 7 (2), p.p.270–273 (1989).Google Scholar
  10. 10.
    K. T. V. Grattan, A. W. Palmer, D. P. S. Saini, “Fiber-optic Evanescent -Wave Coupling Force Transducer.” Proc. SPIE Vol. 586 Optic Sensors, p. 128 (1985).Google Scholar
  11. 11.
    Spillman Jr. W. and McMahon D.H., “Frustrated-Total Internal Reflection Multimode Fiber-Optic Hydrophone.” Appl. Opt. 20, p.p. 3600–3604 (1981)CrossRefGoogle Scholar
  12. 12.
    M. Izutsu, A. Enokihara, and T. Sueta, “Optical-Waveguide Micro-Displacement Sensor.” Electron. Lett., Vol. 18 (20), p.p. 867–868 (1982).CrossRefGoogle Scholar
  13. 13.
    S. Ura, T. Suhara, and H. Nishihara, “Integrated-Optic Interferometer Position Sensor.” Journal of Lightwave Technology, Vol. 7 (2), p.p. 270–273 (1989).CrossRefGoogle Scholar
  14. 14.
    S. Valette, et al., “Silicon-Based Integrated Optics Technology for Optical Sensor Applications.” Sensors and Actuators, A21–A23, p.p. 1087–1091 (1990).CrossRefGoogle Scholar
  15. 15.
    K. Fritsch and G. Beheim, “Wavelength-Division Multiplexed Digital Optical Position Transducer.” Opt. Lett., Vol. 11, p.p. 1–3 (1986).CrossRefGoogle Scholar
  16. 16.
    R.D. Dechstedt and D.A. Jackson, “Performance Analysis of a Fiber Optic Accelerometer Based on a Compliant Cylinder Design.” Rev. Sci. Instrum. 66 (1), p.p.207–214 (1995).CrossRefGoogle Scholar
  17. 17.
    F.A. Castro, S.R.M. Carneiro, O. Lisboa, and S.L.A. Carrara, “Two-Mode Optical Fiber Accelerometer.” Opt. Lett. 17 (20), p.p.1474–1475 (1992).CrossRefGoogle Scholar
  18. 18.
    Masashi Okawa, Musayuhi Izutsu, and Tadasi Sueta, “Integrated Optic Accelerometer Employing a Cantilever on a Silicon Substrate.” Jap. J. Appl. Phys. 28(2), p.p.287–288, 1989.Google Scholar
  19. 19.
    K.E. Burcham, G.N. De Brabander, and J.T. Boyd, “Micromachined Silicon Cantilever Beam Accelerometer Incorporating an Integrated Optical Waveguide.” Integrated Optics and Microstructures, Proc. SPIE, Vol. 1793, p.p. 12–18, 1992.CrossRefGoogle Scholar
  20. 20.
    U. Durig, D. W. Pohl, and F. Rohner, J. Appl. Phys. 59, pp. 3318 1986CrossRefGoogle Scholar
  21. 21.
    R. C. Reddick, R. J. Warmack, D. W. Chilcott, S. L. Sharp, and T. L. Ferrell, “Photon Scanning Tunneling Microscopy.” Rev. Sci. Instrum. Vol. 61 (12), p.p.669–3677 (1990).Google Scholar
  22. 22.
    D. W. Pohl, W. Denk, and M. Lanz, “Optical Stethoscopy: Image Recording with Resolution V20.” Appl. Phys. Lett. Vol. 44 (7), p. 651 (1984).Google Scholar
  23. 23.
    W. Lukosz and P. Pliska, “Integrated optical interferometer as a ligth modulator and microphone.” Sensors and Actuators A, Vol. 25–25, p.p. 337–340 (1991).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • A. Garcia-Valenzuela
    • 1
  • M. Tabib-Azar
    • 1
  1. 1.Department of Electrical Eng. and Applied PhysicsCase Western Reserve UniversityClevelandUSA

Personalised recommendations