Advertisement

Thermal Conductivity of Diamond

  • John E. Graebner
Chapter
Part of the The Kluwer International Series in Engineering and Computer Science book series (EMST)

Abstract

Diamond has the highest thermal conductivity of any known material at temperatures above ~ 100K. The purest natural diamond single crystals reported so far1,2 have a conductivity of 24–25 Wcm-1K-1 at 300K, compared to 4 for Cu and 1.5 for Si. Synthetic single crystals of diamond which are prepared3 with carbon isotopically enriched in 12C show even higher conductivity: 33 Wcm-1K-1. Such high values of thermal conductivity have attracted attention to the possibility of using diamond for thermal management of electronic devices with high local power levels.4,5 The availability of polycrystalline diamond wafers made by chemical vapor deposition (CVD), of quality which now approaches that of the best single-crystal diamond, has opened the door to many imaginative applications of this new material. Generally, two applications have been considered: 1) heat spreading by bonding the device to a larger piece of diamond, and 2) heat spreading by fabricating the device entirely within the bulk of the diamond, rather than in Si or another material. For applications in the first category, both natural and CVD diamond have already served as platforms for high-power diodes and solid-state lasers.4,5,6 The thermal conductivity of state-of-the-art CVD diamond7 is comparable to that of the best single-crystal diamond. Thus, the bottleneck for transferring heat away from the device is usually the thermal resistance at the interface between the device and the diamond, a subject which is in need of further research.8 The second category, the fabrication of devices within diamond, is hampered by the lack of a suitable electronic donor and, until recently, by the lack of CVD material of sufficient purity and crystalline perfection to satisfy even approximately the stringent electrical requirements for solid-state electronic materials. The thermal advantage of eliminating the interface between the doped, electrically-active regions and the higher-purity regions with higher thermal conductivity is obvious. However, data on the thermal conductivity of intentionally doped diamond is meager at the present time. One of the aims of this chapter is to suggest what might be expected when more measurements are available.

Keywords

Thermal Conductivity Thermal Resistance Physical Review Diamond Film Phonon Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Berman, P. R. W. Hudson, and M. Martinez. “Nitrogen in diamond: evidence from thermal conductivity,” Journal of Physics C: Solid State Physics, 8: L430, (1975).Google Scholar
  2. [2]
    J. R. Olson, R. O. Pohl, J. W. Vandersande, A. Zoltan, T. R. Anthony, and W. F. Banholzer. “Thermal conductivity of diamond between 170 and 1200 k and the isotope effect,” Physical Review B, 47:14850, (1993).Google Scholar
  3. [3]
    T. R. Anthony, W. R. Banholzer, J. J. Fleischer, L. Wei, P. K. Kuo, R. L. Thomas, and R. W. Pryor. Thermal diffusivity of isotopically enriched 12c diamond. Physical Review B, 42:1104, 1990.Google Scholar
  4. [4]
    M. Seal. Passive electronic applications. Diamond and Related Materials, 1:1075, 1992.Google Scholar
  5. [5]
    M. Seal. Thermal and optical applications of thin film diaomnd. Philosophical Transactions of the Royal Society of London A, 342:313, 1993.Google Scholar
  6. [6]
    A. Katz, F. Baiocchi, E. Lane, C. H. Lee, C. Hall, J. Doting,C. Grijsbach, and K. Harris. Au-sn/w and au-sn/cr metallized chemical vapor deposited diamond heat sinks for inp laser device applications. Journal of Applied Physics, 75:563, 1994.Google Scholar
  7. [7]
    J. E. Graebner, S. Jin, G. W. Kammlott, J. A. Herb, and C. F. Gardinier. Large anisotropic thermal conductivity in synthetic diamond films. Nature, 359:401, 1992.Google Scholar
  8. [8]
    E. A. Burgemeister. Thermal resistance at metal/diamond interfaces in relation to the mounting of microwave diodes. Journal of Physics D, 10:1923, 1977.Google Scholar
  9. [9]
    R. Berman. Thermal properties. In J. E. Field, editor, The Properties of Diamond, page 1. Academic Press, London, 1979.Google Scholar
  10. [10]
    J. Wilks and E. Wilks. Properties and Applications of Diamond. Butterworth-Heinemann, Oxford, 1991.Google Scholar
  11. [11]
    D. T. Morelli. Thermal conductivity of diamond. In Chemistry and Physics of Carbon. Marcel Dekker, New York, 1993.Google Scholar
  12. [12]
    R. Berman. Thermal conductivity of vapour deposited and isotopically enriched diamonds. In J. E. Field, editor, The Properties of Natural and Synthetic Diamond. Academic Press, London, 1993.Google Scholar
  13. [13]
    J. E. Graebner. Thermal conductivity of cvd diamond: techniques and results. Diamond Films and Technology, 3:77, 1993.Google Scholar
  14. [14]
    A. T. Collins. Intrinsic and extrinsic absorption and luminescence in diamond. Physica B, 185:284, 1993.Google Scholar
  15. [15]
    G. Davies. The optical properties of diamond. In P. L. Walker and P. A. Thrower, editors, Chemistry and Physics of Carbon, Vol. 13. Marcel Dekker, New York, 1977.Google Scholar
  16. [16]
    C. D. Clark, A. T. Collins, and G. S. Woods. Absorption and luminescence spectroscopy. In J. E. Field, editor, The Properties of Natural and Synthetic Diamond. Academic Press, London, 1993.Google Scholar
  17. [17]
    G. Davies. Decomposing the ir absorption spectra of diamonds. Nature, 290:40, 1981.Google Scholar
  18. [18]
    G. Davies. The a nitrogen aggregate in diamond-its symmetry and possible structure. Journal of Physics C, 9:L537, 1976.Google Scholar
  19. [19]
    J. H. N. Loubser and J. A. van Wyk, 1981. Diamond Conference, Reading, UK (unpublished).Google Scholar
  20. [20]
    J. W. Vandersande. A correlation between the infrared absorption features and the low temperature thermal conductivity of different types of natural diamonds. Journal of Physics C: Solid State Physics, 13:759, 1980.Google Scholar
  21. [21]
    T. Evans. Defects in diamond. In Diamond Research 1978, page 17. Industrial Diamond Information Bureau, London, 1978.Google Scholar
  22. [22]
    R. Berman and M. Martinez. The thermal conductivity of diamonds. In Diamond Research 1976, page 7. Industrial Diamond Information Bureau, London, 1976.Google Scholar
  23. [23]
    R. M. Chrenko, R. E. Tuft, and H. M. Strong. Transformation of the state of nitrogen in diamond. Nature, 270:141, 1977.Google Scholar
  24. [24]
    A. T. Collins. Vacancy enhanced aggregation of nitrogen in diamond. Journal of Physics C: Solid State Physics, 13:2641, 1980.Google Scholar
  25. [25]
    T. Evans and Z. Qi. The kinetics of the aggregation of nitrogen atoms in diamond. Proceedings of the Royal Society of London A, 381:159, 1982.Google Scholar
  26. [26]
    G. S. Woods. Platelets and the infrared absorption of type ia diamonds. Proceedings of the Royal Society of London A, 407:219, 1986.Google Scholar
  27. [27]
    T. Evans. Aggregation of nitrogen in diamond. In J. E. Field, editor, The Properties of Natural and Synthetic Diamond. Academic Press, London, 1993.Google Scholar
  28. [28]
    A. T. Collins. The optical and electronic properties of semiconducting diamond. Philosophical Transactions of the Royal Society of London A, 342:233, 1993.Google Scholar
  29. [29]
    A. T. Collins and E. C. Lightowlers. Electrical properties. In J. E. Field, editor, The Properties of Diamond, page 79. Academic Press, London, 1979.Google Scholar
  30. [30]
    A. T. Collins and A. W. S. Williams. The nature of the acceptor centre in semiconducting diamond. Journal of Physics C: Solid State Physics, 4:1789, 1971.Google Scholar
  31. [31]
    D. M. Bibby. Impurities in natural diamond. In P. A. Thrower, editor, Chemistry and Physics of Carbon, Vol. 18. Marcel Dekker, New York, 1982.Google Scholar
  32. [32]
    J. P. F. Sellschop. Nuclear probes in physical and geochemical studies of natural diamond. In J. E. Field, editor, The Properties of Diamond, page 107. Academic Press, London, 1979.Google Scholar
  33. [33]
    J. P. F. Sellschop. Nuclear probes in the study of diamond. In J. E. Field, editor, The Properties of Natural and Synthetic Diamond. Academic Press, London, 1993.Google Scholar
  34. [34]
    S. Dannefaer, P. Mascher, and D. Kerr. Defect characterization in diamond by means of positron annihilation. Diamond and Related Materials, 1:407, 1992.Google Scholar
  35. [35]
    S. Dannefaer, T. Bretagnon, and D. Kerr. Positron lifetime investigations of diamond films. Diamond and Related Materials, 2:1479, 1993.Google Scholar
  36. [36]
    S. Dannefaer. Positron annihilation data. To appear in Properties of Diamonds, INSPEC, 1994.Google Scholar
  37. [37]
    R. Mykolajewycz, J. Kalnajs, and A. Smakula. High-precision density determination of natural diamond. Journal of Applied Physics,35:1773, 1964.Google Scholar
  38. [38]
    J. C. Angus, A. Argoitia, R. Gat, Z. Li, M. Sunkara, L. Wang, and Y. Wang. Chemical vapour deposition of diamond. Philosophical Transactions of the Royal Society of London A, 342:195, 1993.Google Scholar
  39. [39]
    D. Shectman, A. Feldman, M. D. Vaudin, and J. L. Hutchison. Moire fringe images of twin boundaries in chemical vapor deposited diamond. Applied Physics Letters, 62:487, 1993.Google Scholar
  40. [40]
    D. Shectman, J. L. Hutchison, L. H. Robins, E. N. Farabaugh, and A. Feldman. Growth defects in diamond films. Journal of Materials Research, 8:473, 1993.Google Scholar
  41. [41]
    R. E. Clausing, L. Heatherly, L. L. Horton, E. D. Specht, G. M. Begun, and Z. L. Wang. •Texture and morphologies of chemical vapor deposited (cvd) diamond. Diamond and Related Materials, 1:411, 1992.Google Scholar
  42. [42]
    Ch. Wild, N. Herres, and P. Koidl. Texture formation in polycrystalline diamond films. Journal of Applied Physics, 68:973, 1990.Google Scholar
  43. [43]
    A. V. Hetherington, C. J. H. Wort, and P. Southworth. Crystalline perfection of chemical vapor deposited diamond films. Journal of Materials Research, 5:1591, 1990.Google Scholar
  44. [44]
    F. R. Sivazlian and B. R. Stoner. Investigation of the low angle grain boundaries in highly oriented diamond films via transmission electron microscopy. (submitted to Journal of Materials Research).Google Scholar
  45. [45]
    B. R. Stoner and J. T. Glass. Textured diamond growth on (100) ß-sic via microwave plasma chemical vapor deposition. Applied Physics Letters, 60:698, 1992.Google Scholar
  46. [46]
    X. Jiang and C. P. Klages. Heteroepitaxial diamond growth on (100) silicon. Diamond and Related Materials, 2:1112, 1993.Google Scholar
  47. [47]
    P. G. Klemens. Lattice thermal conductivity. Solid State Physics, 7:1, 1958.Google Scholar
  48. [48]
    R. Berman. Thermal Conduction in Solids. Oxford University Press, Oxford, 1976.Google Scholar
  49. [49]
    W. M. MacDonald and A. C. Anderson. Illustrative numerical comparisons between phonon mean free paths and phonon thermal conductivity. In J. G. Hust, editor, Thermal Conductivity 17, page 185. Plenum Press, New York, 1983.Google Scholar
  50. [50]
    D. G. Onn, A. Witek, Y. Z. Qiu, T. R. Anthony, and W. F. Banholzer. Some aspects of the thermal conductivity of isotopically enriched diamond single crystals. Physical Review Letters, 68:2806, 1992.Google Scholar
  51. [51]
    L. Wei, P. K. Kuo, R. L. Thomas, T. R. Anthony, and W. F. Banholzer. Thermal conductivity of isotopically modified single crystal diamond. Physical Review Letters, 70:3764, 1993.Google Scholar
  52. [52]
    V. I. Nepsha, V. R. Grinberg, Yu. A. Klyuyev, A. M. Naletov, and G. R. Bokii. Title in russian. Dokl. Akad. Nauk SSSR, 317:96, 1991.Google Scholar
  53. [53]
    R. Berman. Thermal conductivity of isotopically enriched diamonds. Physical Review B, 45:5726, 1992.Google Scholar
  54. [54]
    K. C. Hass, M. A. Tamor, T. R. Anthony, and W. F. Banholzer. Lattice dynamics and raman spectra of isotopically mixed diamond. Physical Review B, 45:7171, 1992.Google Scholar
  55. [55]
    Y.-J. Han and P. G. Klemens. Anharmonic thermal resistivity of dielectric crystals at low temperature. Physical Review B, 48:6033, 1993.Google Scholar
  56. [56]
    J. Callaway. Model for lattice thermal conductivity at low temperatures. Physical Review, 113:1046, 1959.Google Scholar
  57. [57]
    J. E. Graebner and J. A. Herb. Dominance of intrinsic phonon scattering in cvd diamond. Diamond Films and Technology, 1:155, 1992.Google Scholar
  58. [58]
    E. A. Burgemeister. Thermal conductivity of natural diamond between 320 and 450k. Physica, 93B:165, 1978.Google Scholar
  59. [59]
    J. W. Vandersande, C. B. Vining, and A. Zoltan. Second international symposium on diamond materials. Electrochemical Society Proceedings, 91–8:443, 1991.Google Scholar
  60. [60]
    C. J. Glassbrenner and G. A. Slack. Thermal conductivity of silicon and germanium from 3k to the melting point. Physical Review, 134:A1058, 1964.Google Scholar
  61. [61]
    R. Berman and J. C. F. Brock. The effect of isotopes on lattice heat conduction i. lithium fluoride. Proceedings of the Royal Society A, 289:46, 1965.Google Scholar
  62. [62]
    L. A. Turk and P. G. Klemens. Phonon scattering by impurity platelet precipitates in diamond. Physical Review B, 9:4422, 1974.Google Scholar
  63. [63]
    C. A. Ratsifaritana and P. G. Klemens. Scattering of phonons by vacancies. International Journal of Thermophysics, 8:737, 1987.Google Scholar
  64. [64]
    J. W. Schwartz and C. T. Walker. Thermal conductivity of some alkali halides containing divalent impurities. ii. precipitate scattering. Physical Review, 155:969, 1967.Google Scholar
  65. [65]
    K. Neumaier. Phonon scattering of point defect aggregates of mg in lif. Journal of Low Termperature Physics, 1:77, 1969.Google Scholar
  66. [66]
    J. W. Schwartz and C. T. Walker. Thermal conductivity of some alkali halides containing divalent impurities. i. phonon resonances. Physical Review, 155:959, 1967.Google Scholar
  67. [67]
    D. T. Morelli, T. M. Hartnett, and C. J. Robinson. Phonon defect scattering in high thermal conductivity diamond films. Applied Physical Letters, 59:2112, 1991.Google Scholar
  68. [68]
    R. W. Keyes. Low-temperature thermal resistance of n-type germanium. Physical Review, 122:1171, 1961.Google Scholar
  69. [69]
    H. B. G. Casimir. Note on the conduction of heat in crystals. Physica, 5:495, 1938.Google Scholar
  70. [70]
    A. K. McCurdy, H. J. Maris, and C. Elbaum. Anisotropic heat conduction in cubic crystals in the boundary scattering regime. Physical Review B, 2:4077, 1970.Google Scholar
  71. [71]
    R. Berman, F. E. Simon, and J. M. Ziman. The thermal conductivity of diamond at low temperatures. Proceedings of the Royal Society A, 220:171, 1953.Google Scholar
  72. [72]
    R. Berman, E. L. Foster, and J. M. Ziman. Thermal conduction in artificial sapphire crystals at low temperatures: I. nearly perfect crystals. Proceedings of the Royal Society A, 231:130, 1955.Google Scholar
  73. [73]
    D. R. Frankl and G. C. Campisi. Effects of etching and oxidation on the thermal conductivity of germanium. Physical Review B, 10:2644, 1974.Google Scholar
  74. [74]
    J. W. Vandersande. Thermal-conductivity reduction in electronirradiated type iia diamonds at low temperatures. Physical Review B, 15:2355, 1977.Google Scholar
  75. [75]
    N. Savvides and H. J. Goldsmid. Boundary scattering of phonons in fine-grained hot-pressed ge-si alloys: I and ii. Journal of Physics C: Solid State Physics, 13:4657, 1980.Google Scholar
  76. [76]
    J. E. Graebner, M. E. Reiss, L. Seibles, T. M. Hartnett, R. P. Miller, and C. J. Robinson. Phonon scattering in cvd diamond. (To appear in Phys. Rev. B, 1994).Google Scholar
  77. [77]
    D. P. White and P. G. Klemens. Thermal conductivity of thermoelectric si0.8 -ge0.2 alloys. Journal of Applied Physics, 71:4258, 1992.Google Scholar
  78. [78]
    A. Griffin and P. Carruthers. Thermal conductivity of solids iv: resonance fluorescence scattering of phonons by donor electrons in germanium. Physical Review, 131:1976, 1963.Google Scholar
  79. [79]
    T. Ishiguro, T. A. Fjeldly, and C. Elbaum. Propagation of heat pulses in p-type germanium under uniaxial stress. Physical Review Letters, 27:667, 1971.Google Scholar
  80. [80]
    K. Suzuki and N. Mikoshiba. Ultrasonic attenuation by acceptor holes in si. Physical Review Letters, 28:94, 1972.Google Scholar
  81. [81]
    J. M. Ziman. The effect of free electrons on lattice conduction. Philosophical Magazine, 1:191, 1956.Google Scholar
  82. [82]
    T. Sota, K. Suzuki, and D. Fortier. Low-temperature thermal conductivity of heavily doped n-type ge. Physical Review B, 31:7947, 1985.Google Scholar
  83. [83]
    J. E. Graebner, S. Jin, G. W. Kammlott, J. A. Herb, and C. F. Gardinier. Unusually high thermal conductivity in diamond films. Applied Physics Letters, 60:1576, 1992.Google Scholar
  84. [84]
    D. G. Cahill. Thermal conductivity measurement from 30 to 750k: the 3ω method. Review of Scientific Instruments, 61:802, 1990.Google Scholar
  85. [85]
    D. G. Cahill and R. O. Pohl. Thermal conductivity of amorphous solids above the plateau. Physical Review B, 35:4067, 1987.Google Scholar
  86. [86]
    W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. Journal of Applied Physics, 32:1679, 1961.Google Scholar
  87. [87]
    J. E. Graebner, S. Jin, G. W. Kammlott, B. Bacon, L. Seibles, and W. Banholzer. Anisotropic thermal conductivity in chemical vapor deposition diamond. Journal of Applied Physics, 71:5353, 1992.Google Scholar
  88. [88]
    G. A. Slack. Nonmetallic crystals with high thermal conductivity. Journal of the Physics and Chemistry of Solids, 34:321, 1973.Google Scholar
  89. [89]
    J. W. Vandersande, A. Zoltan, J. R. Olson, R. O. Pohl, T. R. Anthony, and W. F. Banholzer. Thermal conductivity of diamond between 170 and 1200k and the isotope effect. In M. Meissner and R. O. Pohl, editors, Phonon Scattering in Condensed Matter VII. Springer-Verlag, Berlin, 1993.Google Scholar
  90. [90]
    P. G. Klemens. The scattering of low-frequency lattice waves by static imperfections. Proceedings of the Physical Society of London A, 68:1113, 1955.Google Scholar
  91. [91]
    E. A. Burgemeister, C. A. J. Ammerlaan, and G. Davies. Thermal and optical measurements on vacancies in type iia diamond. Journal of Physics C: Solid State Physics, 13:L691, 1980.Google Scholar
  92. [92]
    E. A. Burgemeister and C. A. J. Ammerlaan. High-temperature thermal conductivity of electron-irradiated diamond. Physical Review B, 21:2499, 1980.Google Scholar
  93. [93]
    J. W. Vandersande. Thermal-conductivity reduction in electronirradiated type iia diamonds at low temperatures. Physical Review 5, 15:2355, 1977.Google Scholar
  94. [94]
    D. T. Morelli, T. A. Perry, and J. W. Farmer. Phonon scattering in lightly neutron-irradiated diamond. Physical Review B, 47:131, 1993.Google Scholar
  95. [95]
    R. Berman, E. L. Foster, and J. W. Ziman. The thermal conductivity of dielectric crystals: the effect of isotopes. Proceedings of the Royal Society of London A, 237:344, 1956.Google Scholar
  96. [96]
    J. W. Vandersande. Low temperature thermal conductivity of natural type ii diamonds. In Diamond Research 1973, page 21. Industrial Diamond Information Bureau, London, 1973.Google Scholar
  97. [97]
    J. F. Goff and N. Pearlman. Thermal transport properties of n-type ge at low temperatures. Physical Review, 140:A2151, 1965.Google Scholar
  98. [98]
    M. Pomerantz. Interaction of microwave phonons with donor electrons in ge and si. Physical Review B, 1:4029, 1970.Google Scholar
  99. [99]
    K. Lassmann and Hp. Schad. Ultrasonic attenuation due to the neutral acceptor mn in gaas. Solid State Communications, 18:449, 1976.Google Scholar
  100. [100]
    J. A. Carruthers, T. H. Geballe, H. M. Rosenberg, and J. M. Ziman. The thermal conductivity of germanium and silicon between 2 and 300k. Proceedings of the Royal Society of London A, 238:502, 1957.Google Scholar
  101. [101]
    T. H. Geballe and G. W. Hull. Isotopic and other types of thermal resistance in germanium. Physical Review, 110:773, 1958.Google Scholar
  102. [102]
    D. T. Morelli, J. P. Heremans, C. P. Beetz, W. S. Yoo, and H. Matsunami. Phonon-electron scattering in single crystal silicon carbide. Applied Physics Letters, 63:3143, 1993.Google Scholar
  103. [103]
    J. E. Graebner, S. Jin, J. A. Herb, and C. F Gardinier. Local thermal conductivity in cvd diamond. To appear in Journal of Applied Physics, August, 1994.Google Scholar
  104. [104]
    T. R. Anthony. The thermal conductivity of cvd diamond films. Philosophical Transactions of the Royal Society of London, A, 342:245, 1993.Google Scholar
  105. [105]
    K. Baba, Y. Aikawa, and N. Shohata. Thermal conductivity of diamond films. Journal of Applied Physics, 69:7313, 1991.Google Scholar
  106. [106]
    J. A. Herb, C. Bailey, K. V. Ravi, and P. A. Dennig. The impact of deposition parameters on the thermal conductivity of cvd thin diamond films. Electrochemical Society Proceedings, 89–12:366, 1989. First International Symposium on Diamond and Diamondlike Films.Google Scholar
  107. [107]
    J. E. Graebner, J. A. Mucha, L. Seibles, and G. W. Kammlott. The thermal conductivity of chemical-vapor-deposited diamond films on silicon. Journal of Applied Physics, 71:3143, 1992.Google Scholar
  108. [108]
    T. R. Anthony and W. F. Banholzer. Properties of diamond with varying isotopic composition. Diamond and Related Materials, 1:717, 1992.Google Scholar
  109. [109]
    T. R. Anthony, W. F. Banholzer, J. F. Fleischer, L. Wei, P. K. Kuo, R. L. Thomas, and R. W. Pryor. The thermal conductivity of isotopically enriched polycrystalline diamond films. Journal of Applied Physics, 69:8122, 1991.Google Scholar
  110. [110]
    J. E. Graebner, T. M. Hartnett, and R. P. Miller. Improved thermal conductivity in isotopically enriched cvd diamond. Applied Physics Letters, 64:2549, 1994.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • John E. Graebner
    • 1
  1. 1.AT&T Bell LabsMurray HillUSA

Personalised recommendations