Skip to main content

Code Synchronization: A Review of Principles and Techniques

  • Chapter
Code Division Multiple Access Communications

Abstract

We review the main concepts underlying the derivation of appropriate receivers for code synchronization in spread spectrum systems emphasizing a likelihood theory viewpoint. Practical structures for the separate tasks of code acquisition and tracking are discussed and categorized. A brief discussion of analysis tools and performance measures is presented, along with design considerations for threshold settings, and impact of fading. An extensive bibliography is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Code Acquisition

  1. A. Aftelak et al - Design and Implementation of Spread Spectrum Demodulator for Data-Relay Systems, IAF - 92–0416–1992

    Google Scholar 

  2. W. K. Alem, “Advanced Techniques for Direct Sequence Spread Spectrum Acquisition,” Ph.D. Dissertation, Dept. of Electrical Engineering, University of Southern California, February 1977.

    Google Scholar 

  3. W. K. Alem, G. K. Huth, J. K. Holmes, and S. Udalov, “Spread Spectrum Acquisition and Tracking Performance for Shuttle Communication Links,”IEEE Trans Comm.Vol. COM-26, pp. 1689–1702, November 1978.

    Google Scholar 

  4. W. R. Braun, “Performance Analysis for the Expanding Search PN Acquisition Algorithm,”IEEE Trans. Comm.Vol. 30, No. 3, pp. 424–435, March 1982.

    MathSciNet  MATH  Google Scholar 

  5. J. J. Bussgang and D. Middleton, “Optimum Sequential Detection of Signals in Noise,”Trans. IREVol. IT-1, pp. 5–18, December 1955.

    Google Scholar 

  6. C. R. Cahn, “Performance of Digital Matched Filter Correlator With Unknown Interference,”IEEE Trans. on Comm.Vol. 19, No. 6, pp. 1163–1172, December 1971.

    Google Scholar 

  7. U. Cheng, “Performance of a Class of Parallel Spread-Spectrum Code Acquisition Schemes in the Presence of Data Modulation,”IEEE Trans. on Comm.Vol. 36, No. 5, pp. 596–604, May 1988.

    Google Scholar 

  8. T. Cheng et al - Single Dwell and Multi Dwell PN Code Acquisition in Multipath Rayleigh Fading Channel, PIMRC’93,Yokohama, Japan, September 8–11, 1993, pp.8–11.

    Google Scholar 

  9. U. Cheng, W. Hurd and J. Statman, “Spread Spectrum Code Acquisition in the Presence of Doppler Shifts and Data Modulation,”IEEE Trans. on Comm.Vol. 38, No. 2, pp. 241–250, February 1990.

    Google Scholar 

  10. G. M. Comparetto, “A General Analysis for a Dual Threshold Sequential Detection PN Acquisition Receiver,”IEEE Trans. Comm.Vol. 35, No. 9, pp. 956–960, September 1987.

    Google Scholar 

  11. S. Davidovici, L. B. Milstein, D. L. Schilling, “New Rapid Acquisition Technique for Direct Sequence Spread-Spectrum Communications,”IEEE Trans. Comm.Vol. 32, No. 11, pp. 1161–1168, November 1984.

    MathSciNet  Google Scholar 

  12. L. D. Davisson and P. G. Flikkema, “Fast Single-Element PN Acquisition for the TDRSS MA System,”IEEE Trans. Comm.Vol. 36, No. 11, pp. 1226–1235, November 1988.

    Google Scholar 

  13. D. M. Di Carlo, “Multiple Dwell Serial Synchronization of Pseudonoise Signals,” Ph.D. Dissertation, Dept. of Electrical Engineering, University of Southern California, May 1979.

    Google Scholar 

  14. D. M. Di Carlo and C. L. Weber, “Statistical Performance of Single Dwell Serial Synchronization Systems,”IEEE Trans. Comm.Vol. 28, No. 8, pp. 1382–1388, August 1980.

    Google Scholar 

  15. D. M. DiCarlo and C. L. Weber, “Multiple Dwell Serial Search: Performance and Application to Direct Sequence Code Acquisition,”IEEE Trans. Comm.Vol. 31, No. 5, pp. 650–659, May 1983.

    MATH  Google Scholar 

  16. D. M. Dlugos and R. A. Scholtz, “Acquisition of Spread Spectrum Signals by an Adaptive Array,”IEEE Trans. on Acoustics Speech and Signal ProcessingVol. 37, No. 8, pp. 1253–1270, August 1989.

    Google Scholar 

  17. A. K. Elhakeem, G. S. Takbar, and S. C. Gupta, “New Code Acquisition Techniques in Spread Spectrum Communications,”IEEE Trans. Comm.Vol. 28, pp. 249–257, February 1980.

    Google Scholar 

  18. E. Gilbert - Capacity of a Burst-Noise ChannelBell System Tech. J1960, Vol.39, pp. 1253–1265

    MathSciNet  Google Scholar 

  19. G. S. Glisic, “Automatic Decision Threshold Level Control (ADTLC) in Direct-Sequence Spread-Spectrum Systems Based on Matching Filtering,”IEEE Trans. Comm.Vol. 36, No. 4, pp. 519–527, April 1988.

    Google Scholar 

  20. G. S. Glisic, “Automatic Decision Threshold Level Control in Direct-Sequence Spread-Spectrum Systems,”IEEE Trans. Comm.Vol. 39, No. 2, pp. 187–192, February 1991.

    Google Scholar 

  21. M. Grob et al - Microcellular Direct Sequence Spread Spectrum Radio System Using N-Path RAKE Receiver -IEEE Journal on Selected Areas in Commun.Vol.8, No.5, June 1990, pp. 772–780

    Google Scholar 

  22. DeGrieco - The Application of Charge Coupled Devices to Spread Spectrum Systems -IEEE Trans. on Comm.Vol. COM-28, No.3, Sep. 1980

    Google Scholar 

  23. C. Gumacos, “Analysis of an Optimum Sync Search Procedure,”IRE Trans. Comm. SystemsVol. 11, pp. 89–99, March 1963.

    Google Scholar 

  24. J. K. Holmes and C. C. Chen, “Acquisition Time Performance of PN Spread Spectrum Systems,”IEEE Trans. Comm.Special Issue on Spread Spectrum Communications, Vol. 25, pp. 778–784, August 1977.

    MATH  Google Scholar 

  25. J. K. Holmes and K. T. Woo,“An Optimum PN Çode Search Technique for a Given A Priori Signal Location Density,”NTC 78 Conference RecordBirmingham,Alabama; 18.6, pp. 18.6.1–18.6.5, December 3 - 6, 1978.

    Google Scholar 

  26. P. M. Hopkins, “A Unified Analysis of Pseudonoise Synchronization by Envelope Correlation,”IEEE Trans. Comm.Vol. 25, pp. 770–778, August 1977.

    MATH  Google Scholar 

  27. W Hurd et al - High Dynamic GPS Receiver Using Maximum Likelihood Estimation and Frequency Tracking -IEEE Trans. AerospaceVol.23, Sept.1987

    Google Scholar 

  28. V. M. Jovanovic, “Analysis of Strategies for Serial Search Spread-Spectrum Code Acquisition-Direct Approach,”IEEE Trans. Comm.Vol. 36, pp. 1208–1220, November 1988.

    Google Scholar 

  29. V. M. Jovanovic, “On the Distribution Function of the Spread-Spectrum Code Acquisition Time,”IEEE J. Select. Areas Comm.Vol. 10, No. 4, pp. 760–769, May 1992.

    Google Scholar 

  30. L. Kanal et al - Models for Channels with Memory and their Applications to Error Control -Proc. IEEE1978, vol.66, pp. 724–744

    MathSciNet  Google Scholar 

  31. C. C. Kilgus, “Pseudonoise Code Acquisition Using Majority Logic Decoding,”IEEE Trans. Comm.Vol. 21, pp. 772–774, June 1973.

    Google Scholar 

  32. J. Krebser, “Performance of FH-Synchronizers with Constant Search Rate in the Presence of Partial Band Noise,”Proceedings of the 1980 International Zurich Seminar on Communications.

    Google Scholar 

  33. I. Lehnert and M. Pursley - Multipath Diversity Reception of Spread Spectrum Multiple Access Communications -IEEE Transactions on CommunicationsVol. COM-35, No.11, November 1987, pp. 1189–1198

    Google Scholar 

  34. Y. H. Lee and S. Tantaratana, “Sequential Acquisition of PN Sequences for DS/SS Communications: Design and Performance,”IEEE J. Select. Areas Comm.Vol. 10, No. 4, pp. 750–759, May 1992.

    Google Scholar 

  35. U. Madhow and M. B. Pursley, “Acquisition in Direct-Sequence Spread-Spectrum Communication Networks: An Asymptotic Analysis,”IEEE Trans. Inform. TheoryVol. 39, No. 3, pp. 903–912, May 1993.

    MATH  Google Scholar 

  36. J. W. Mark and I. F. Blake, “Rapid Acquisition Techniques in CDMA Spread-Spectrum Systems,”IEE ProceedingsVol. 131, Part F, No. 2, pp. 223–232, April 1984.

    Google Scholar 

  37. H. Meyr and G. Polzer, “ Performance Analysis for General PNSpread Spectrum Acquisition Techniques,”IEEE Trans. Comm.Vol. 31, No. 12, pp. 1317–1319, Dec. 1983.

    Google Scholar 

  38. L. E. Miller, J. S. Lee, R. H. French and D. J. Torrieri, “Analysis of an Antijam FH Acquisition Scheme”IEEE Trans. Comm.Vol. 40, No. 1, pp. 160–170, January 1992.

    Google Scholar 

  39. L. B. Milstein, J. Gevargis and P. K. Das, “Rapid Acquisition for Direct Sequence Spread Spectrum Communications Using Parallel SAW Convolvers,”IEEE Trans. Comm.Vol. 33, No. 7, pp. 593–600, July 1985.

    Google Scholar 

  40. Y. Miyagaki et al - Double Symbol Error Rates of M-arg DPSK in a Satellite - Aircraft Multipath Channels -IEEE Trans. Comm.Vol. COM-31, pp. 1285–1289, Dec. 1983

    Google Scholar 

  41. S. M. Pan, D. E. Dodds and S. Kumar, “Acquisition Time Distribution for Spread-Spectrum Receiver,”IEEE J. Select. Areas Comm.Vol. 8, No. 5, pp. 800–808, June 1990.

    Google Scholar 

  42. M. Pandit, “Mean Acquisition Time of Active and Passive-Correlation Acquisition Systems for Spread-Spectrum Communication Systems,”IEE Proc.Vol. 128, Part F, No. 4, pp. 211–214, August 1981.

    Google Scholar 

  43. P. Pawlowski and A. Polydoros, “Optimization of a Matched Filter Receiver for FH Code Acquisition in Jamming,”Proc. IEEE 1985 Conf. Military Commun.pp. 1.1.1–1.1.7, Oct. 1985.

    Google Scholar 

  44. A. Polydoros, “On the Synchronization Aspects of Direct Sequence Spread Spectrum Systems,” Ph.D. Dissertation, Dept. of Electrical Engineering, University of Southern California, August 1982.

    Google Scholar 

  45. A. Polydoros and M. Simon, “Generalized Serial Search Code Acquisition: The Equivalent Circular State Diagram Approach,”IEEE Trans. on Comm.Vol. 32, No. 12, pp. 1260–1268, December 1984.

    Google Scholar 

  46. A. Polydoros and C. L. Weber, “A Unified Approach to Serial Search Spread-Spectrum Code Acquisition-Part I: General Theory,”IEEE Trans. Comm.Vol. 32, No. 5, pp. 542–549, May 1984.

    Google Scholar 

  47. A. Polydoros and C. L. Weber, “A Unified Approach to Serial Search Spread-Spectrum Code Acquisition-Part II: A Matched-Filter Receiver,”IEEE Trans. Comm.Vol. 32, No. 5, pp. 550–560, May 1984.

    Google Scholar 

  48. E. C. Posner, “Optimal Search Procedures,”IEEE Trans. Inform.TheoryVol. IT-11, pp. 157–160, July 1963.

    Google Scholar 

  49. C. A. Putman, S. S. Rappaport, and D. L. Schilling, “A Comparison of Schemes for Coarse Acquisition of Frequency Hopped Spread Spectrum Signals,”Proc. ICC ‘81Denver, Colorado, pp. 34.2.1–34.2.5, June 1981.

    Google Scholar 

  50. S. S. Rappaport and D. M. Grieco, “Spread-Spectrum Signal Acquisition: Methods and Technology,”IEEE Comm. MagazineVol. 22, No. 6, pp. 6–21, June 1984.

    Google Scholar 

  51. S. Rappaport and D. Schilling, “A Two Level Coarse Code Acquisition Scheme for Spread Spectrum Radio,”IEEE Trans. Comm.Vol. 28, pp. 1739–1742,1980.

    Google Scholar 

  52. G. F. Sage, “Serial Synchronization of Pseudonoise Systems,”IEEE Trans. Comm.Vol. 12, pp. 123–127, December 1964.

    MathSciNet  Google Scholar 

  53. M. K. Simon, J. K. Omura, R. A. Scholtz, B. K. LevittSpread Spectrum Communication IIIRockville, MD: Computer Science, 1985.

    Google Scholar 

  54. E. W. Siess and C. L. Weber, “Acquisition of Direct Sequence Signals with Modulation and Jamming,”IEEE Journal on Selected Areas in Comm.Vol. 4, No. 2, pp. 254–272, March 1986.

    Google Scholar 

  55. E. A. Sourour and S. C. Gupta, “Direct-Sequence Spread-Spectrum Parallel Acquisition in a Fading Mobile Channel,”IEEE Trans. Comm.Vol. 38, No. 7, pp. 992–998, July 1990.

    Google Scholar 

  56. E. A. Sourour and S. C. Gupta, “Direct-Sequence Spread-Spectrum Parallel Acquisition in Nonselective and Frequency-Selective Rician Fading Channels,”IEEE Trans. Comm.Vol. 10, No. 3, pp. 535–544, April 1992.

    Google Scholar 

  57. S. Soliman and R. Scholtz - Synchronization over Fading Dispersive Channels -IEEE Transcations on Comm.Vol.36, No.4, 1988, pp. 499–505

    Google Scholar 

  58. J. J. Stiffler, “Rapid Acquisition Sequences,”IEEE Trans. Inform. TheoryVol. IT-14, No. 2, pp. 221–225, March 1968.

    MathSciNet  Google Scholar 

  59. J. J. StifflerTheory of Synchronous CommunicationsPrentice-Hall, Englewood Cliffs, New Jersey, 1971.

    Google Scholar 

  60. Y. T. Su and C. L. Weber, “A Class of Sequential Tests and Its Applications,”IEEE Trans. Comm.Vol. 38, No. 2, pp. 165–171, February 1990.

    Google Scholar 

  61. Y. T. Su, “Rapid Code Acquisition Algorithm Employing PN Matched Filters,”IEEE Trans. Comm.Vol. 36., No. 6, pp. 724–733, June 1988.

    Google Scholar 

  62. R. Suzuki et al - Spread spectrum satellite communication terminal with coherent matched filter - Conference recordGLOBECOM ‘86Vol.2, pp. 728–732

    Google Scholar 

  63. M. Thompson et al - Non-Coherent PN Code Acquisition in Direct Sequence Spread Spectrum Systems Using a Neural NetworkMilcom 93Conference Record, Vol.1, pp. 30–34

    Google Scholar 

  64. I. Vajda and G. Einarsson, “Code Acquisition for a Frequency-Hopping System,”IEEE Trans. Comm.Vol. COM-35, No. 5, pp. 566–568, May 1987.

    Google Scholar 

  65. H. L. Van TreesDetection Estimation and Modulation Theory Part 1Wiley, New York, 1968.

    MATH  Google Scholar 

  66. A. WaldSequential AnalysisWiley, New York, 1947.

    MATH  Google Scholar 

  67. R. B. Ward,“Acquisition of Pseudonoise Signals by Sequential Estimation,”IEEE Trans. Comm.Vol. 13, pp. 475 - 483,December 1965.

    Google Scholar 

  68. R. B. Ward and K. P. Yiu, “Acquisition of Pseudonoise Signals by Recursion Aided Sequential Estimation,”IEEE Trans. Comm.Vol. 25, pp. 784–794, August 1977.

    MATH  Google Scholar 

  69. A. Weinberg, “Generalized Analysis for the Evaluation of Search Strategy Effects on PN Acquisition Performance,”IEEE Trans. Comm.Vol. 31, pp. 37–49, January 1983.

    Google Scholar 

  70. N. D. Wilson, S. S. Rappaport, M. M. Vasudevan, “Rapid Acquisition Scheme for Spread-Spectrum Radio in a Fading Environment,”IEE ProceedingsVol. 135, Part F, No. 1, February 1988.

    Google Scholar 

Code tracking

  1. R. E. Ziemer and R. L. PetersonDigital Communications and Spread Spectrum SystemsMcMillan, Inc., 1985.

    Google Scholar 

  2. W. M. Bowles, “GPS CodeTracking and Acquisition Using Extended-Range Detectors,” Charles Stark Draper Lab., Inc., April 1979; see alsoProc. NTC’80Houston, Texas, pp. 24.1.1–24.1.5, December 1980.

    Google Scholar 

  3. G. Comparetto, “A Noncoherent Delay-Locked Loop Using the Exit-Time Criterion,”IEEE Trans. Comm.Vol. 35, No. 11, pp. 1240–1244, November 1987.

    Google Scholar 

  4. W. J. Gill, “A Comparison of Binary Delay-Lock Loop Implementations,”IEEE Trans. Aerospace Electr. Sys.Vol. 2, pp. 415–424, July 1966.

    Google Scholar 

  5. S. Glisic and L. Milstein, Discrete Tracking System for Slow FH:Part I: Algorithms with Distributed Synchronization GroupIEEE Transactions onComm.,Vol.39,No.2, pp304–314, February 1991.

    Google Scholar 

  6. S. Glisic, L. Milstein, Discrete Tracking System for Slow FH: Part II: Algorithms with Concentrated Synchronization GroupIEEE Transactions on Comm.Vol.39,No.2, pp314–324, February 1991.

    Google Scholar 

  7. S. Glisic et al, Efficiency of Digital Communication Systems, IEEE Transactions on Communications, Vol.COM-35,No.6,pp679–684, June 1987.

    Google Scholar 

  8. H. P. Hartmann, “Analysis of a Dithering Loop for PN Code Tracking,”IEEE Trans. Aerospace Electr. Sys.Vol. 10, pp. 2–9, January 1974.

    Google Scholar 

  9. J. K. Holmes and L. Biederman, “Delay-Lock-Loop Mean Time to Lose Lock,”IEEE Trans. Comm.Vol. 26, pp. 1549–1556, November 1978.

    Google Scholar 

  10. P. M. Hopkins, “Double Dither Loop for Pseudonoise Code Tracking,”IEEE Trans. Aerospace Electr. Sys.Vol. 13, pp. 644–650, November 1977.

    Google Scholar 

  11. R. Iltis, “Joint Estimation of PN Code Delay and Multipath using the Extended Kalman Filter,”IEEE Trans. Comm.Vol. 38, No. 10, pp. 1677–1685, October 1990.

    Google Scholar 

  12. R. Iltis, “An EKF-based Joint Estimator for Interference, Multipath and Code Delay in a DS Spread Spectrum Receiver,” to appearinIEEE Trans. Comm.

    Google Scholar 

  13. K. Kosbar, “Open and Closed Loop Delay Estimation with Applications’ to Pseudo-Noise Code Tracking,” Ph.D. Dissertation, Dept. of Electrical Engineering, University of Southern California, July 1988.

    Google Scholar 

  14. K. Kosbar and A. Polydoros, “A Lower-Bounding Technique for the Delay Estimation of Discontinuous Signals,”IEEE Trans. Inform TheoryVol. 38, No. 2,pp. 451–457,March 1992

    Google Scholar 

  15. D. T. LaFlame, “A Delay-Lock Loop Implementation Which Is Insensitive to Arm Gain Imbalance,”IEEE Trans. Comm.Vol. 27, pp. 1632–1633, October 1979.

    Google Scholar 

  16. J.W. Layland, “On Optimal Signals for Phase-Locked Loops,”IEEE Trans. Comm. TechnologyVol. 17,No. 5, pp. 526–531, October 1969.

    Google Scholar 

  17. W. C. Lindsey and H. Meyr, “Complete Statistical Description of the Phase-Error Process Generated by Correlative Tracking Systems,”IEEE Trans. Inform. TheoryVol. 23, pp. 194–202, March 1977.

    MATH  Google Scholar 

  18. W. C. LindseySynchronization Systems in Communication and ControlPrentice Hall, Englewood Cliffs, New Jersey, 1972.

    Google Scholar 

  19. H. Meyr, “Nonlinear Analysis of Correlative Tracking Systems Using Renewal Process Theory,”IEEE Trans. Comm.Vol. 23, pp. 192–203, February 1975.

    MATH  Google Scholar 

  20. H. Meyr, “Delay-Lock Tracking of Stochastic Signals,”IEEE Trans. Comm.Vol. 24, pp. 331–339, March 1976.

    MATH  Google Scholar 

  21. P. T. Neilson, “On the Acquisition Behavior of Binary Delay-Lock Loops,”IEEE Trans. Aerospace Electr. Sys.Vol. 11, pp. 415–418, May 1975.

    Google Scholar 

  22. A. Polydoros, “On the Synchronization Aspects of Direct-Sequence Spread Spectrum Systems,” Ph.D. Dissertation, Dept. of Electrical Engineering, University of Southern California, August 1982.

    Google Scholar 

  23. A. Polydoros and C. L. Weber, “Analysis and Optimization of Correlative Code-Tracking Loops in Spread Spectrum,”IEEE Trans. Comm.Vol. 33, pp. 30–43, January 1985.

    MATH  Google Scholar 

  24. R. Raheli, A. Polydoros and C-K. Tzou, “Per-Survivor Processing: A General Approach to MLSE in Uncertain Environments,” accepted for publication inIEEE Trans. Comm.1994.

    Google Scholar 

  25. M. K. Simon, “Noncoherent Pseudonoise Code-Tracking Performance of Spread Spectrum Receivers,”IEEE Trans. Comm.Vol. 25, pp. 327–345, March 1977.

    MATH  Google Scholar 

  26. M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. LevittSpread Spectrum Communications Vol IIIComputer Science Press, 1985.

    Google Scholar 

  27. J.J. Spilker, Jr. and D. T. Magill, “The Delay-Lock Discriminator-An Optimum Tracking Device,”Proc. IREVol. 49, pp. 18, September 1961.

    Google Scholar 

  28. J. J. Spilker, Jr., “Delay-Lock Tracking of Binary Signals,”IEEE Trans. Space. Electron. Telem.Vol 9, pp. 1–8, March 1963.

    Google Scholar 

  29. J. J. Stiffler,Theoryof Synchronous CommunicationsPrentice Hall, Englewood Cliffs, New Jersey, 1971.

    Google Scholar 

  30. R. Ward and A. Polydoros, “Optimization of Full-Time and Time-Shared Noncoherent Code Tracking Loops,”Proceedings of MILCOM‘85, Boston, Mass., pp. 1.6.1–5, October 1985.

    Google Scholar 

  31. R. Ward, “Optimization of Full-Time and Time-Shared Noncoherent Code Tracking Loops,” Ph.D. Dissertation, Dept. of Electrical Engineering, University of Southern California, August 1985.

    Google Scholar 

  32. A. L. Welti and B. Z. Bobrovsky, “Mean Time to Lose Lock for a Coherent Second-Order PN-Code Tracking Loop - The Singular Perturbation Approach,”IEEE Journal on Selected Areas in Comm.Vol. 8, No. 5, pp. 809–818, June 1985.

    Google Scholar 

  33. R. A. Yost and R. W. Boyd, “A Modified PN Code Tracking Loop: Its Performance Analysis and Comparative Evaluation,”IEEE Trans. Comm.Vol. 30, pp. 1027–1036, May 1982.

    Google Scholar 

  34. R. E. Ziemer and R. L. PetersonDigital Communications and Spread Spectrum SystemsMcMillan, Inc., 1985. General problem of time delay estimation

    Google Scholar 

  35. R. E. Bethel, R. G. Rahikka, Optimum time delay detection and trackingIEEE Transaction on Aerospace and Electronic SystemsVol.26, No.5, Sept. 1990, pp. 700–712/4.5

    Google Scholar 

  36. R. E. Bethel, R. G. Rahikka, Multisignal time delay detection and tracking, IEEE Transaction on Aerospace and Electronic Systems, Vol.28, No.3, July 1992, p. 675–696/4.5

    Google Scholar 

  37. J. Bohmann, H. Meyr, An all-digital realization of a baseband DLL implemented as a dynamical state estimatorIEEE Transaction on Acoustics Speech and Signal ProcessingVol. ASSP-34, No.3, June 1986, pp. 535–545/4.5

    Google Scholar 

  38. D. Bourdreau, P. Kabal, Joint time-delay estimation and adaptive recursive least squares filteringIEEE Transactions on Signal ProcessingVol.41, No.2, Feb. 1993, pp. 592–601/4.5

    Google Scholar 

  39. B. Champagne, M. Eizenman, S. Pasupathy, Exact Maximum likelihood time delay estimation for short observation intervalsIEEE Transactions on Signal ProcessingVol. 39, No.6, June 1991, pp. 1245–1257/4.5

    Google Scholar 

  40. Y. T. Chan, J. M. F, Riley, J. B. Plant, Modeling of time delay and its applications to estimation of nonstationary delaysIEEE Transactions on Acoustics Speech and Signal ProcessingVol. ASSP-29, No.3, June 1981, pp. 577–581/4.5

    Google Scholar 

  41. H-I Chiang, C. L. Nikias, A new method for adaptive time delay estimation for nongaussian signalsIEEE Transactions on Acoustics Speech and Signal ProcessingVo1.38, No.2, Feb. 1990, pp. 209–217/4.5

    MathSciNet  Google Scholar 

  42. P. Diaz, D. Henche, R. Agusti, A PN code delay estimator based on the extended kalman filter for a DS/CDMA cellular system, The Fourth International Symposium on Personal, Indoor and Mobile Radio Communications, Yokohama, Japan, Sebtember 8–11, 1993/4.5

    Google Scholar 

  43. D. M. Etter, S. D. Stearns, Adaptive estimation of time delays in sampled data systems, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol ASSP-29, No.3, June 1981, pp. 582–587/4.5

    Google Scholar 

  44. P. L. Feintuch, N. J. Bershad, F. A. Reed, Time delay estimation using the LMS adaptive filter-dynamic behavior, IEEE Transactions on Acoustics, Speech, nad Signal Processing, Vol. ASSP-29, No.3, June 1981, pp. 571–576/4.5

    Google Scholar 

  45. W. H. Haas, C. S. Lindquist, A synthesis of frequency domain filters for time delay estimation, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-29, No.3, June 1981, pp. 540–548/4.5

    Google Scholar 

  46. K. C. Ho, Y. T. Chan, P. C. Ching, Adaptive time-delay estimation in nonstationary signal and/or noise power enviroments, IEEE Transactions on Signal Processing, Vol.41, No.7, July 1993, pp. 2289–2299/4.5

    MATH  Google Scholar 

  47. G. Jacovitti, G. Scarano, Discrete time techniques for time delay estimation, IEEE Transactions on Signal Processing, Vol.41, No.2, Feb. 1993, pp. 525–533/4.5

    MATH  Google Scholar 

  48. K. L. Kosbar, J. L. Zaninovich, Periodic PN sequence delay estimation using phase spectrum data, GLOBECOM’93, pp. 1665–1669/4.5

    Google Scholar 

  49. I. M. G. Lourtie, J. M. F. Moura, Multisource delay estimation:nonstationary signals, IEEE Transactions on Signals Processing, Vol.39, No.5, May 1991, pp.1033–1048/4.5

    Google Scholar 

  50. H. Meyr, G. Spies, The structure and performance of estimetors for real-time estimation of randomly varying time delay, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-32, No.1, Feb. 1984, pp. 81–94/4.5

    Google Scholar 

  51. L. E. Miller, J. S. Lee, Error analysisof time delay estimation using a finite integration time correlator, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-29, No.3, June 1981, pp. 490–496/4.5

    MATH  Google Scholar 

  52. M-A Pallas, G. Jourdain, Active high resolution time delay estimation for large BT signals, IEEE Transaction on Acoustics, Speech, and Signal Processing, Vol.39, No.4, April 1991, pp. 781–788/4.5

    Google Scholar 

  53. F. A. Reed, P. L. Feintuch, N. J. Bershad, Time delay estimation using the LMS adaptive filter - static behavior, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-29, No.3, June 1981, pp. 561–571/4.5

    Google Scholar 

  54. M. A. Rodrigues, R. H. Williams, T. J. Carlow, Signal delay and waveform estimation using unwrapped phase averaging, IEEE Transaction on Acoustics, Speech, and Signal Processing, Vol. ASSP-29, No.3, June 1981, pp. 508–513/4.5

    Google Scholar 

  55. K. Scaraborough, N. Ahmed, G. C. Carter, On the simulation of a class of time delay estimation algorithms, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-29, No.3, June 1981, pp. 534–540/4.5

    Google Scholar 

  56. M. Segal, E. Weinstein, B. R. Musicus, Estimate-maximize algorithms for multichannel time delay and signal estimation, IEEE Transaction on Acoustics, Speech, and Signal Processing, Vol.39, No.1, Jan. 1991, pp.1–16/4.5

    MATH  Google Scholar 

  57. S. Stein, Algorithms for ambiguity function processing, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-29, No.3, June 1981, pp.588–599/4.5

    Google Scholar 

  58. J. K. Tugnait, On time delay estimation with unknoen spatially correlated gaussian noise using fourth-order cumulants and cross cumulants, IEEE Transactions on Signal Processing, Vol.39, No.6, June 1991, pp. 1258–1267/4.5

    MathSciNet  MATH  Google Scholar 

  59. J. K. Tugnait, Time delay estimation with unknown spatially correlated gaussian noise, IEEE Transactions on Signal Processing, Vol.41, No.2, Feb. 1993, pp. 549–558/4.5

    MATH  Google Scholar 

  60. M. Wax, The estimate of time delay between two signals with random relative phase shift, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-29, No.3, June 1981, pp. 497–501/4.5

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Polydoros, A., Glisic, S. (1995). Code Synchronization: A Review of Principles and Techniques. In: Glisic, S.G., Leppänen, P.A. (eds) Code Division Multiple Access Communications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2251-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2251-5_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5948-7

  • Online ISBN: 978-1-4615-2251-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics