Skip to main content

Approximate Computation of Sojourn Time Distribution in Open Queueing Networks

  • Conference paper
Computations with Markov Chains

Extended Abstract

The method of decomposition of queues has been widely used in solution of large and complex queueing networks for which exact solutions do not exist. We apply the basic paradigm of decomposition in computing approximations to the sojourn-time distribution in open queueing networks in which the service times and arrival processes are non-Markovian. For doing so we have made use of existing results on sojourn time distribution at a single queue. Using these, a queueing network is translated into a semi-Markov chain, whose absorption time distribution approximates the sojourn time distribution of the queueing network. However, the semi-Markov model does not represent the state of the queueing network (i.e., number of jobs at each queue). The state-space size of the semi-Markov models is thus linear in the number of queues in the network. This is achieved by having one state in the semi-Markov model corresponding to each queue in the queueing network, and one absorbing state to denote exit out of the network. The states are then connected together according to the topology of the network. The holding time distribution of a state is the sojourn time distribution at the corresponding queue. This sojourn time distribution must be computed by considering each queue in isolation. We approximate the arrival process to each queue to a phase-type arrival process, and then compute the sojourn time distribution assuming it is a PH/G/1 queue. Once we have the holding time distributions and the routing probability matrix, the absorption time distribution of the semi-Markov chain can be computed. The absorption time distribution approximates the sojourn time distribution of the queueing network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this paper

Cite this paper

Mainkar, V., Trivedi, K.S., Rindos, A.J. (1995). Approximate Computation of Sojourn Time Distribution in Open Queueing Networks. In: Stewart, W.J. (eds) Computations with Markov Chains. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2241-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2241-6_37

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5943-2

  • Online ISBN: 978-1-4615-2241-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics