Skip to main content

Numerical Solution of Large Finite Markov Chains by Algebraic Multigrid Techniques

  • Conference paper

Abstract

Iterative aggregation/disaggregation procedures are a convenient numerical solution method for computing the stationary distribution vector of an ergodic homogeneous Markov chain with a finite state space. We show the equivalence of this method and a two-level multigrid method. Based on error results of the A/D-method, we provide an error analysis of an efficient multigrid variant of the multiplicative Schwars-iteration method. Furthermore, we apply these results to a multigrid version of the replacement process approach developed by Sumita and Rieders.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. A. Barker. Numerical solution of sparse singular systems of equations arising from ergodic Markov chains. Commun. Statist.-Stochastic Models, 5, 335–381, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical Sciences. Academic Press, New York, 1979.

    MATH  Google Scholar 

  3. W. Cao and W. J. Stewart. Iterative aggregation/disaggregation techniques for nearly uncoupled Markov chains. Journal of the ACM, 32, 702–719, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Chatelin and W. L. Miranker. Acceleration by aggregation of successive approximation methods. Linear Algebra and its Applications, 43, 17–47, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. J. Courtois. Decomposability. Academic Press, New York, 1977.

    MATH  Google Scholar 

  6. W. Dahmen and L. Elsner. Algebraic multigrid methods and the Schur complement. In W. Hackbusch, ed., Robust Multi-Grid Methods, pp. 58–68, Notes on Numerical Fluid Mechanics, Vol. 23, Vieweg, Braunschweig, 1988.

    Google Scholar 

  7. C. C. Douglas and W. L. Miranker. Constructive interference in parallel algorithms. SIAM J. Numer. Analysis, 25(2), 376–398, 1988.

    Article  MathSciNet  Google Scholar 

  8. I. Gohberg, P. Lancaster, and L. Rodman. Matrix Polynomials. Academic Press, New York, 1982.

    MATH  Google Scholar 

  9. W.Hackbusch. Iterative Loeaung grosser schwachbesetzter Gleichungssysteme. Teubner, Stuttgart, 1991.

    Google Scholar 

  10. M. Haviv. Aggregation/disaggregation methods for computing the stationary distribution of a Markov chain. SIAM J. Numer. Analysis, 24(4), 952–966, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Horton and S. Leutenegger. A multilevel solution algorithm for steady-state Markov chains. In Proc. SIGMETRICS 94, Nashville, 16–20 May, 1994.

    Google Scholar 

  12. T. Kato. Perturbation theory for linear operators. Springer, Berlin, 1966.

    MATH  Google Scholar 

  13. J. G. Kemeny. Generalization of a Fundamental Matrix. Linear Algebra and its Applications,38, 193–206, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  14. U. R. Krieger. Analysis of a loss system with mutual overflow in a Markovian environment. In W. J. Stewart, ed., Numerical Solution of Markov Chains, pp. 303–328, Marcel Dekker, New York, 1991.

    Google Scholar 

  15. U. R. Krieger, B. Willer-Clostermann, and M. Sczittnick. Modeling and analysis of communication systems based on computational methods for Markov chains. IEEE Journal on Selected Areas in Communications, 8(9), 1630–1648, 1990.

    Article  Google Scholar 

  16. U. R. Krieger and M. Sczittnick. Application of numerical solution methods for singular systems in the field of computational probability theory. In R. Beauwens and P. de Groen, eds., Iterative Methods in Linear Algebra, pp. 613–626, North-Holland, Amsterdam, 1992.

    Google Scholar 

  17. U. R. Krieger. On iterative aggregation/disaggregation methods for finite Markov chains. Preprint, submitted, 1993.

    Google Scholar 

  18. J. Mandel and B. Sekerka. A local convergence proof for the iterative aggregation method. Linear Algebra and its Applications, 51, 163–172, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  19. C. D. Meyer. The role of the group generalised inverse in the theory of finite Markov chains. SIAM Review, 17, 443–464, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Schneider. Theorems on M-splittings of a singular M-matrix which depend on graph structure. Linear Algebra and its Applications, 58, 407–424, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  21. P. J. Schweitzer. Aggregation methods for large Markov chains. In P. J. Courtois, G. Iazeolla, and A. Hordijk, eds., Mathematical Computer Performance and Reliability, pp. 275–285, North-Holland, Amsterdam, 1984.

    Google Scholar 

  22. P. J. Schweitzer. A survey of aggregation-disaggregation in large Markov chains. In W. J. Stewart, ed., Numerical Solution of Markov Chains, pp. 63–88, Marcel Dekker, New York, 1991.

    Google Scholar 

  23. P. J. Schweitzer and K. W. Kindle. An iterative aggregation-disaggregation algorithm for solving linear equations. Applied Mathematics and Computation, 18, 313–353, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  24. W. J. Stewart and W. Wu. Numerical experiments with iteration and aggregation for Markov chains. ORSA Journal of Computing, 4(3), 336–350, 1992.

    Article  MATH  Google Scholar 

  25. U. Sumita and M. Rieders. A new algorithm for computing the ergodic probability vector for large Markov chains: Replacement process approach. Probability in the Engineering and Informational Sciences, 4, 89–116, 1990.

    Article  MATH  Google Scholar 

  26. D. B. Szyld. Local convergence of (exact and inexact) iterative aggregation. In C. D. Meyer and R. J. Plemmons, eds., Linear Algebra,Markov Chains, and Queueing Models, pp. 137–143, Springer, New York, 1993.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this paper

Cite this paper

Krieger, U.R. (1995). Numerical Solution of Large Finite Markov Chains by Algebraic Multigrid Techniques. In: Stewart, W.J. (eds) Computations with Markov Chains. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2241-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2241-6_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5943-2

  • Online ISBN: 978-1-4615-2241-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics