Electrotonic Structure and Synaptic Variability in Cortical Neurons

  • D. K. Smetters
  • S. B. Nelson
Conference paper


Compartmental models of reconstructed cortical neurons were used to assess the relative contributions of electrotonic filtering, synaptic parameters and recording characteristics on the distribution of synaptic responses measured at the soma from synapses located throughout the dendritic tree. In voltage clamp, cable filtering alone can generate significant variability and skewed amplitude and rise time distributions similar to those seen experimentally. Measures which are already significantly low-pass filtered, such as current clamp peak amplitude and area, are much less affected by cable filtering, and in order to match the experimentally observed distributions we must postulate another source of variability. Varying the peak synaptic conductance independent of location is sufficient to match the experimental distributions of all of these parameters, without interfering with the fit of the voltage-clamp distributions. This suggests that the synaptic variability measured experimentally is due to an interplay between cable filtering and intrinsic differences between synapses.


Rise Time Peak Amplitude Synaptic Input Voltage Clamp Dendritic Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Chagnac-Amitai, Y., A. Friedman, B. W. Connors and M. J. Gutnick (1993) Cerebral Cortex, 3:26–38.CrossRefGoogle Scholar
  2. [2]
    Cauller, L. J. and B. W. Connors (1992) in Single Neuron Computation, T. McKenna, J. Davis and S. F. Zornetser, eds.Google Scholar
  3. [3]
    Hestria, S. (1992) Neuron, 9:991–999.CrossRefGoogle Scholar
  4. [4]
    Hines, M. (1989) Int. J. Biomed. Comput., 24:55–68.CrossRefGoogle Scholar
  5. [5]
    Holmes, W. R. (1989) Brain Research, 478:127–137.CrossRefGoogle Scholar
  6. [6]
    Jaslove, S. W. (1992) Neuroscience, 47:495–519.CrossRefGoogle Scholar
  7. [7]
    Kim, H. G and B. W. Connors (1993) J. Neurosci., 13:5301–5311.Google Scholar
  8. [8]
    Larkman, A. U. (1991) J. Comp. Neurol., 306:332–343.CrossRefGoogle Scholar
  9. [9]
    Malgaroli, A. and R. W. Tsien (1992) Nature, 357:134–139.ADSCrossRefGoogle Scholar
  10. [10]
    Major, G. (1992)Ph.D. Thesis, Oxford University.Google Scholar
  11. [11]
    Manabe, T., P. Renner and R. A. Nicoll (1992) Nature 355:50–55.ADSCrossRefGoogle Scholar
  12. [12]
    Rail, W. (1967) J. Neurophysiol., 30:1138–1168.Google Scholar
  13. [13]
    Roll, W., R. E. Burke, T. G. Smith, P. G. Nelson and K. Frank (1967) J. Neurophysiol., 30:1169–1193.Google Scholar
  14. [14]
    Ra11, W. and I. Segev (1985) in Voltage and Patch-clamping with Microelectrodes, pp. 191–215, T. G. Smith Jr., H. Lecar and S. J. Redman, eds.Google Scholar
  15. [15]
    Rastaad, M., J. F. Storm and P. Andersen (1992) Eur. J. Nenrosci., 4:113–117.CrossRefGoogle Scholar
  16. [16]
    Regehr, W., J. Kehoe, P. Ascher and C. Armstrong (1993) Neuron, 11:145–151.CrossRefGoogle Scholar
  17. [17]
    Silver, R. A., S. F. Traynelis and S. G. Cull-Candy (1992) Nature, 355:163–166.ADSCrossRefGoogle Scholar
  18. [18]
    Smetters, D. K. and S. B. Nelson. (1993) Soc. for Neuroscience Abstracts.Google Scholar
  19. [19]
    Spruston, N. and D. Johnston (1992) J. Neurophysiol., 87:508–529.Google Scholar
  20. [20]
    Spruston, N., D. B. Jaffe, S. H. Williams and D. Johnston (1993) J. Neurophysiol., 70:781–802.Google Scholar
  21. [21]
    Stern, P., F. A. Edwards and B. Sakmann. (1992) J. Physiol., 449:247–278.Google Scholar
  22. [22]
    Bekkers, J. M., G. B. Richerson and C. F. Stevens (1990) Proc. Natl. Acad. Sci. 87:5359–5362.ADSCrossRefGoogle Scholar
  23. [23]
    Thomson, A. M., J. Deuchars and D. C. West (1993) Neuroscience 54:347–360.CrossRefGoogle Scholar
  24. [24]
    Thomson, A. M. and D. C. West (1993) Neuroscience 54:329–346.CrossRefGoogle Scholar
  25. [25]
    Ulrich, D. and H-R. Luscher (1993) J. Nenrophysiol., 69:1769–1773.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • D. K. Smetters
    • 1
  • S. B. Nelson
    • 2
  1. 1.Department of Brain and Cognitive ScienceMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Biology and Volen Center for Complex SystemsBrandeis UniversityWalthamUSA

Personalised recommendations