Advertisement

The Photorefractive Effect in Ferroelectric Oxides

  • M. H. Garrett
  • G. D. Fogarty
  • G. D. Bacher
  • R. N. Schwartz
  • B. A. Wechsler
Part of the Electronic Materials: Science and Technology book series (EMST)

Abstract

Ferroelectric materials derive their name by analogy with ferromagnetic materials, of which have found great utility as memory storage media and magnetic field sensors. Crystals such as lithium niobate (LiNbO3), barium titanate (BaTiO3) potassium niobate (KNbO3) are ferroelectric crystals that have the Perovskite structure, ABO3. They undergo a structural phase transition in which the force of the local electric field caused by the ionic displacement is larger than the first order elastic restoring force [1]. This results in the formation of electric dipole moments, a net spontaneous dielectric polarization, and a noncentrosymmetric crystal. The change from a paraelectric to ferroelectric state is accompanied by either a continous (second-order) or discontinous (first-order, e.g. BaTiO3) change in the spontaneous polarization at the structural phase transition temperature called, (by analogy with ferromagnetic materials), the Curie temperature, TC. The polarity of these crystals results in strong anisotropic nonlinear properties, e.g., the electrooptic or Pockels effect. These large band-gap materials (Eg∼3 eV) are insulators, but intrinsic or extrinsic defects with energy levels in the band gap make these materials photoconductive at visible and near-infrared wavelengths. As described in the introductory chapter of this book, these defects help produce the photorefractive modulation of the real and imaginary parts of the index of refraction. Index modulations or phase modulations can be used for optical information processing, e.g. correlators, filters or neural networks, and potentially (as has been speculated since the discovery of the photorefractive effect) may be a method by which a ferroelectric inorganic crystal can become a memory storage media, i.e. for volume holographic data storage.

Keywords

Probe Beam Pump Beam Barium Titanate Shallow Trap PHOTOREFRACTIVE Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Kittel, Introduction to Solid State Physics, J. Wiley & Sons, Inc., pg. 417, (1976).Google Scholar
  2. [2]
    F.M. Michel-Calendini, H. Chermette, and J. Weber, J. Phys. C13, 1427 (1980).Google Scholar
  3. [3]
    H.-J. Hagemann and D. Hennings, J. Am. Ceram. Soc. 64, 590 (1981).CrossRefGoogle Scholar
  4. [4]
    H. Kröse, E. Possenriede, R. Scharfschwerdt, T. Varnhorst, O. F. Schirmer, H. Hesse, C. Kuper, presented at European Materials Research Society Meeting, Strasbourg, France, May 1994. To be published in Optical Materials journal.Google Scholar
  5. [5]
    P.G. Schunemann, D.A. Temple, R.S. Hathcock, H.L. Tuller, H.P. Jenssen, D.R. Gabbe, and C. Warde, J. Opt. Soc. Am. B 5, 1685 (1988).CrossRefGoogle Scholar
  6. [6]
    B.A. Wechsler and M. B. Klein, J. Opt. Soc. Am. B 5, 1711 (1988).CrossRefGoogle Scholar
  7. [7]
    D.E. Rase and R. Roy, J. Am. Ceram. Soc. 38, 110 (1955).CrossRefGoogle Scholar
  8. [8]
    K.W. Kirby and B.A. Wechsler, J. Am. Ceram. Soc. 74, 1841 (1991).CrossRefGoogle Scholar
  9. [9]
    V. Belruss, J. Kalnajs and A. Linz, Mat. Res. Bull. 6, 899 (1971).CrossRefGoogle Scholar
  10. [10]
    M.H. Garrett, J.Y. Chang, H.P. Jenssen, and C. Warde, Ferroelectrics 120, 167 (1991).CrossRefGoogle Scholar
  11. [11]
    Y. Furukawa, M. Sato, K. Kitamura, and F. Nitanda, J. Cry. Growth 128, 909 (1993).CrossRefGoogle Scholar
  12. [12]
    K. Buse, F. Bailer, R. Pankrath, H. Hesse, and E. Krätzig, Sol. State. Comm. 88, 587 (1993).CrossRefGoogle Scholar
  13. [13]
    P.G. Schunemann, T.M. Pollak, Y.-Y. Teng and C. Wong, J. Opt. Soc. Am. B 5, 1702 (1988).CrossRefGoogle Scholar
  14. [14]
    C. Warde, T.W. McNamara, M. H. Garrett, and P. Tayebati, SPIE Conference CR48-07, San Diego, CA. July (1993).Google Scholar
  15. [15]
    T. W. McNamara, S.G. Conahan, I. Mnushkina, M. H. Garrett, H.P. Jenssen, and C. Warde, SPIE Critical Review Proceedings Vol. CR-48, editors P. Yeh and C. Gu, 1994.Google Scholar
  16. [16]
    B.A. Wechsler, M. B. Klein, C.C. Nelson, and R.N. Schwartz, Opt. Lett. 19, 536 (1994).CrossRefGoogle Scholar
  17. [17]
    H.-J. Hagemann, “Akzeptorionen in BaTiO3 und SrTiO3 und ihre Auswirkung auf die Eigenschaften von Titanatkeramiken,” Ph. D Thesis, Rheinisch-Westfalischen Technischen Hochschule, Aachen (1980).Google Scholar
  18. [18]
    P.G. Schunemann, Master Thesis, Massachusetts Institute of Technology, Cambridge, MA (1987).Google Scholar
  19. [19]
    F.A. Kroger and HJ. Vink, “Relations between the concentrations of imperfections in crystalline solids,” in Solid State Physics 3, F. Seitz and D. Turnbull, eds., Academic Press, 307 (1956).Google Scholar
  20. [20]
    S.A. Long and R.N. Blumenthal, J. Amer. Ceram. Soc. 54, 515 (1971).CrossRefGoogle Scholar
  21. [21]
    N.G. Eror and D.M. Smyth, J. Solid State Chem. 24, 235 (1978).CrossRefGoogle Scholar
  22. [22]
    N.-H. Chan, R.K. Sharma and D.M. Smyth, J. Amer. Ceram. Soc. 64, 556 (1981).CrossRefGoogle Scholar
  23. [23]
    H.-J. Hagemann and D. Hennings, J. Amer. Ceram. Soc. 64, 590 (1981).CrossRefGoogle Scholar
  24. [24]
    A. Lahlafi, G. Godefroy, G. Ormancey, and P. Jullien, J. Opt. Soc. Am. B 10, 1276 (1993).CrossRefGoogle Scholar
  25. [25]
    Observations made by the first author of this chapter.Google Scholar
  26. [26]
    P. Coufová, Czech. J. Phys. B 18, 1038 (1968).CrossRefGoogle Scholar
  27. [27]
    D.L. Staebler and W. Phillips, App. Opt. 13, 788 (1974).CrossRefGoogle Scholar
  28. [28]
    M. Jaros, Deep Levels in Semiconductors (Adam Hilger Ltd., Bristol, 1982).Google Scholar
  29. [29]
    S. T. Pantelides, ed., Deep Centers in Semiconductors (Gordon and Breach Science Publishers, New York, 1986); Rev. Mod. Phys. 50, 797 (1978).Google Scholar
  30. [30]
    A. Zunger, Solid State Phys. 39, 276 (1986).Google Scholar
  31. [31]
    M. Lannoo and J. Bourgoin, Point Defects in Semiconductors 1, Vol. 22 of Springer Series in Solid-State Sciences (Springer-Verlag, Berlin, 1981).CrossRefGoogle Scholar
  32. [32]
    J. Bourgoin and M. Lannoo, Point Defects in Semiconductors II, Vol. 35 of Springer Series of Solid-State Sciences (Springer-Verlag, Berlin, 1983).CrossRefGoogle Scholar
  33. [33]
    R. N. Schwartz, B. A. Wechsler, and D. Rytz, J. Am. Ceram. Soc. 73, 200 (1990).CrossRefGoogle Scholar
  34. [34]
    M. B. Klein and R. N. Schwartz, J. Opt. Soc. Am. B 3, 293 (1986).CrossRefGoogle Scholar
  35. [35]
    K. A. Johnson, Adv. Quantum Chem. 7, 143 (1973).CrossRefGoogle Scholar
  36. [36]
    D. S. McClure, Solid State Phys. 9, 399 (1959).CrossRefGoogle Scholar
  37. [37]
    J.S. Griffith, The Theory of Transition-Metal Ions (Cambridge University Press, 1961).Google Scholar
  38. [38]
    R.N. Schwartz, B.A. Wechsler, and R.A. McFarlane, Phys. Rev. B 46, 3263 (1992).CrossRefGoogle Scholar
  39. [39]
    A.M. Stoneham, Theory of Defects in Solids (Oxford University Press, Oxford, 1975).Google Scholar
  40. [40]
    D. Rytz, B.A. Wechsler, M.H. Garrett, C.C. Nelson, and R. N. Schwartz, J. Opt. Soc. Am. B7, 2245 (1990).Google Scholar
  41. [41]
    D. Rytz, R.R. Stephens, B.A. Wechsler, M.S. Keirstead, and T. M. Baer, Opt. Lett. 15, 1279 (1990).CrossRefGoogle Scholar
  42. [42]
    M.H. Garrett, J.Y. Chang, H.P. Jenssen, and C. Warde, Opt. Lett. 17, 103 (1992).CrossRefGoogle Scholar
  43. [43]
    K. Zdansky’, H. Arend, and F. Kubec, Phys. Stat. Solidi 20, 653 (1967).CrossRefGoogle Scholar
  44. [44]
    M. Aguilar, Solid State Commun. 50, 837 (1984).CrossRefGoogle Scholar
  45. [45]
    K.W. Blazey and K.A. Müller, J. Phys. C: Solid State Phys. 16, 5491 (1983).CrossRefGoogle Scholar
  46. [46]
    E. Possenriede, P. Jacobs, and O.F. Schirmer, J. Phys.: Condens. Matter 4, 4719 (1992).CrossRefGoogle Scholar
  47. [47]
    A. Abragam and M.H.L. Pryce, Proc. Roy. Soc. (London) A206, 173 (1951).Google Scholar
  48. [48]
    W. Low, Phys. Rev. 109, 256 (1958).CrossRefGoogle Scholar
  49. [49]
    G.M. Zverev and A.M. Prokhorov, Soviet Phys. JETP 16, 303 (1963).Google Scholar
  50. [50]
    R.N. Schwartz and B.A. Wechsler, Phys. Rev. B 48, 7057 (1992).Google Scholar
  51. [51]
    G.W. Ross, P. Hribek, R.W. Eason, M.H. Garrett, and D. Rytz, Opt. Commun. 101 60, (1993).CrossRefGoogle Scholar
  52. [52]
    J.S. Griffith, The Theory of Transition-Metal Ions (Cambridge U. Press, London, 1961), Chap. 9.Google Scholar
  53. [53]
    C.K. Jørgensen, Acta Chem. Scand. 10, 500 (1956).CrossRefGoogle Scholar
  54. [54]
    C.K. Jørgensen, Acta Chem. Scand. 11, 151 (1957).CrossRefGoogle Scholar
  55. [55]
    A. Raizman, J.T. Suss, and S. Szapiro, Phys. Lett., 32A 30 (1970).Google Scholar
  56. [56]
    M.G. Townsend, J. Chem. Phys. 41, 3149 (1964).CrossRefGoogle Scholar
  57. [57]
    M.H. Garrett, C. Warde, H.P. Jenssen, S. MacCormack, D. Bacher, J. Feinberg and R.N. Schwartz, submitted for publication JOSA B, June 1994.Google Scholar
  58. [58]
    B. Steiner, M. Kuriyama, R.C. Dobbyn, Prog. Crystal Growth and Charact. 20, 189 (1990).CrossRefGoogle Scholar
  59. [59]
    B. Steiner, U. Laor, M. Kuriyama, G.G. Long, R.C. Dobbyn, J. Crystal Growth 87,79 (1988).CrossRefGoogle Scholar
  60. [60]
    B. Steiner, M. Kuriyama, R.C. Dobbyn, U. Laor, D. Larson, M. Brown, J. Appl. Phys. 66, 559 (1989).CrossRefGoogle Scholar
  61. [61]
    M. Kuriyama, B. Steiner, R.C. Dobbyn, U. Laor, D. Larson, M. Brown, Phys. Rev. B 38, 12421 (1988).CrossRefGoogle Scholar
  62. [62]
    B.W. Batterman, H. Cole, Rev. Mod. Phys. 36, 681 (1964).CrossRefGoogle Scholar
  63. [63]
    A.B. Buckman, Guided-Wave Photonics, Saunders College, New York, (1988).Google Scholar
  64. [64]
    J. Gronkowski, Phys. Rpts., 206 (1991).Google Scholar
  65. [65]
    G. Fogarty, M. Cronin-Golomb, B. Steiner, U. Laor, OSA 1993 Technical Digest Series 11, 610 (1993).Google Scholar
  66. [66]
    G. Fogarty, M. Cronin-Golomb, B. Steiner, Synchrotron Radiation News, 6 11 (1993).CrossRefGoogle Scholar
  67. [67]
    P. Gunter, M. Zgonik, Optics Letters 16, 1826 (1991).CrossRefGoogle Scholar
  68. [68]
    G. Fogarty and M. Cronin-Golomb, unpublished.Google Scholar
  69. [69]
    A.A. Izvanov, A.E. Mandel, N.D. Khatov, and S.M. Shandorov, Optoelectronics, data processing and instrumentation 2, 80 (1986), trans. of Avtometriya 2, 79 (1986).Google Scholar
  70. [70]
    S.I. Stepanov, S.M. Shandorov, and N.D. Khatkov, Sov. Phys. Solid State 29, 1754 (1987).Google Scholar
  71. [71]
    M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M.H. Garrett, D. Rytz, Y. Zhu and X. Wu, accepted for publication Phys. Rev. B 50, 1 (1994).Google Scholar
  72. [72]
    N.V. Kukhtarev, V.B. Markov, S.G. Odoulov, M.S. Soskin and V.L. Vinetskii, Ferroelectrics 22, 949 (1979).CrossRefGoogle Scholar
  73. [73]
    F.P. Strohkendl, M.C. Jonathan, and R.W. Hellwarth, Opt. Lett. 11, 312 (1986).CrossRefGoogle Scholar
  74. [74]
    G.C. Valley, J. Appl. Phys. 59, 3363 (1986).CrossRefGoogle Scholar
  75. [75]
    D. Mahgerefteh and J. Feinberg, Phys. Rev. Lett. 64, 2195 (1990).CrossRefGoogle Scholar
  76. [76]
    G.A. Brost and R.A. Motes, Opt. Lett. 15, 1194 (1990).CrossRefGoogle Scholar
  77. [77]
    F.P. Strohkendl, J. Appl. Phys. 65, 3773, (1989).CrossRefGoogle Scholar
  78. [78]
    G.A. Brost, R.A. Motes, and J.R. Rotge, J. Opt. Soc. Am. 5, 1879 (1988).CrossRefGoogle Scholar
  79. [79]
    P. Tayebati, Ph. D.Dissertation, University of Southern California, Los Angeles, CA (1989).Google Scholar
  80. [80]
    P. Tayebati and D. Mahgerefteh, J. Opt. Soc. Am. B 8, 1053 (1990).Google Scholar
  81. [81]
    R.S. Cudney, R.M. Pierce, G.D. Bacher, and J. Feinberg, J. Opt. Soc. B 8(6), 1326 (1991).CrossRefGoogle Scholar
  82. [82]
    P. Tayebati, J. Opt. Soc. Am. B 9, 415 (1992).CrossRefGoogle Scholar
  83. [83]
    S. Ducharme, J. Feinberg and R.R. Neurgaonkar, IEEE J. Quant. Elect. QE-23 12, 2166 (1987).Google Scholar
  84. [84]
    S.H. Wemple, M. Didomenico, Jr., and I Camlibel, J. Phys. and Chem. Solids 29, 1797 (1968).CrossRefGoogle Scholar
  85. [85]
    R.M. Pierce, R.S. Cudney, G.D. Bacher, and J. Feinberg, Opt. Lett. 15, 414 (1990).CrossRefGoogle Scholar
  86. [86]
    R.A. Vazquez, R.R. Neurgaonkar, and M.D. Ewbank, J. Opt. Soc. Am. B 9, 1416 (1992).CrossRefGoogle Scholar
  87. [87]
    J.E. Ford, Y. Fainman, and S. H. Lee, Appl. Opts. 28, 4808 (1989).CrossRefGoogle Scholar
  88. [88]
    G.W. Ross, P. Hribek, R.W. Eason, M.H. Garrett, and D. Rytz, Technical Digest of the Photorefractive Materials, Effects, and Devices PRM 93, THAO4, Kiev, Ukraine, Aug. 11-15, 51 (1993).Google Scholar
  89. [89]
    M.H. Garrett, P. Tayebati, J.Y. Chang, H.P. Jenssen, and C. Warde, J. Appl. Phys. 72, 1965 (1992).CrossRefGoogle Scholar
  90. [90]
    A. Motes and J.J. Kim, J. Opt. Soc. B 4, 1379 (1987).Google Scholar
  91. [91]
    G.D. Bacher, Ph.D. dissertation, University of Southern California, Los Angeles (1994).Google Scholar
  92. [92]
    G.A. Brost, R.A. Motes, and J.R. Rotge, J. Opt. Soc. Am. 5, 1879 (1988).CrossRefGoogle Scholar
  93. [93]
    R.M. Pierce, R.S. Cudney, G.D. Bacher and J. Feinberg, Opt. Lett. 15, 414 (1990).CrossRefGoogle Scholar
  94. [94]
    A.V. Alekseev-Popov, A.V. Kynaz’kov and A.S. Satkin, Sov. Tech. Phys. Lett. 9, 475 (1983).Google Scholar
  95. [95]
    R.S. Cudney, G.D. Bacher, R.M. Pierce, and J. Feinberg, Opt. Lett. 17, 67 (1992).CrossRefGoogle Scholar
  96. [96]
    R.S. Cudney, Ph. D. dissertation, University of Southern California, Los Angeles (1992).Google Scholar
  97. [97]
    M.B. Klein in Photorefrative Materials and Applications I, edited P. Günter and J.-P. Huignard, Topics in Applied Physics Vol. 61, (Springer Verlag Berlin, 1988).Google Scholar
  98. [98]
    M.B. Klein and G.C. Valley, J. Appl. Phys. 57, 4901 (1985).CrossRefGoogle Scholar
  99. [99]
    G.C. Valley, J. Opt. Soc. Am. B14, 14 (1987).Google Scholar
  100. [100]
    P. Yeh, Appl. Opt. 26, 602 1987CrossRefGoogle Scholar
  101. [101]
    D. Rytz, M.B. Klein, R.A. Mullen, R.N. Schwartz, G.C. Valley, and B. A. Wechsler, Appl. Phys. Lett. 52, 1759 (1988). See also, P. Günter, Phys. Rev. 93, 199 (1982).CrossRefGoogle Scholar
  102. [102]
    G.C. Valley and M.B. Klein, Opt. Eng. 22, 704, (1983).CrossRefGoogle Scholar
  103. [103]
    Private communication between the first author of the chapter and Dr. T. Chang. of Rockwell International Science Center, Thousand Oaks, CA.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • M. H. Garrett
    • 1
  • G. D. Fogarty
    • 2
  • G. D. Bacher
    • 3
  • R. N. Schwartz
    • 4
  • B. A. Wechsler
    • 4
  1. 1.Deltronic Crystal Ind., IncDoverUSA
  2. 2.Tufts University, EOTCMedfordUSA
  3. 3.Dept. of Physics, University ParkUniversity of Southern CaliforniaLos AngelosUSA
  4. 4.GM Hughes Research LaboratoryMalibuUSA

Personalised recommendations