Skip to main content

Contact and Interconnect Technology

  • Chapter
  • 817 Accesses

Abstract

The preceding chapters described how to define p- and n-type doped regions in single crystal and polycrystalline material. Those regions are the basic elements of semiconductor devices that must be connected in a specific configuration to form the desired circuit. The circuit must also be accessible to the “outside world” through conducting pads for testing with metal probes and for bonding to metal pins to complete the packaged chip. While doped silicon and polysilicon conduct electricity, they are of limited use for interconnections, mainly because of their prohibitively large resistance and lack of interconnecting flexibility. Therefore, at least one low-resistance conductor film must be deposited and patterned to contact and interconnect the different regions on the chip. Several single- and multi-metal systems are available for this purpose. Because of its high conductivity, compatibility with a silicon-base technology, and low processing cost, aluminum is the most widely used interconnect material.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

IRPS:

International Reliability Physics Symposium.

VMIC:

VLSI Multilevel Interconnection Conference

IEDM:

International Electron Dvice Meeting.

References

  1. Semiconductor Industry Association, Technology Roadmap defined during the Semiconductor Technology Workshop, 1993.

    Google Scholar 

  2. R. M. Geffken, J. G. Ryan and G. J. Slusser, “Contact Metallurgy Development for VLSI Logic,” IBM J. Res. Dev., 31(6), 608 (1987).

    Article  Google Scholar 

  3. M. Hansen and A. Anderko, Constitution of Binary Alloys, McGraw Hill (1958).

    Google Scholar 

  4. J. O. McCaldin and H. Sankur, “Diffusivity and Solubility of Silicon in the Al Metallization of Integrated Circuits,” Appl. Phys. Lett., 19, 524 (1971).

    Article  Google Scholar 

  5. B. L. Crowder and S. Zirinski, “One Micron MOSFET VLSI Technology: Part VII-Metal Silicide Interconnection Technology-A Future Perspective,” IEEE Trans. Electron Dev., ED-26, 369 (1979).

    Article  Google Scholar 

  6. S. P. Murarka, “Refractory Silicides,” IEDM Tech. Dig., 454 (1979).

    Google Scholar 

  7. C. Koburger, M. Ishaq, and H. J. Geipel, “Electrical Properties of Composite Evaporated Silicide/Polyilicon Electrodes,” J. Electrochem. Soc., 129, 1307 (1982).

    Article  Google Scholar 

  8. M. Y. Tsai, H. H. Chao, L. M. Ephrath, B. L. Crowder, A. Cramer, R. S. Bennett, C. J. Lucchese, and M. R. Wordeman, “One Micron Polycide (WSi2 on Poly-Si) MOSFET Technology,” J. Electrochem. Soc., 128, 2207 (1981).

    Article  Google Scholar 

  9. M. Y. Tsai, F. M. d’Heurle, C. S. Petersson, and R. W. Johnson, “Properties of WSi2 Film on Poly-Si, J. Appl. Phys., 52, 5350 (1981).

    Article  Google Scholar 

  10. N. Kobayashi, S. Iwata, and N. Yamamutu, “Refractory Metals for Silicides,” IEDM Tech. Dig., 122 (1984).

    Google Scholar 

  11. S. P. Murarka, Silicides for VLSI Applications, Academic Press, New York (1983).

    Google Scholar 

  12. B. Davari, Y. Taur, D. Moy, F. M. d’Heurle, and C. Y. Ting, “Very Shallow Junctions for Submicron CMOS Technology Using Implanted Ti for Silicidation.” in Proceeding of the 1st Ultra Large Integration Sci. Techn., S. Broydo and C. M. Osburn, Eds., 368–375, The Electrochem. Soc., Pennington (1987).

    Google Scholar 

  13. R. W. Mann, L. A. Clevenger, P. D. Agnello, and F. R. White, “Silicides and Local Interconnects for High-Performance VLSI Applications,” To be published in IBM J. Res. Dev., June/July 1995.

    Google Scholar 

  14. C. M. Osburn, “Silicides,” Rapid Thermal Processing Sci. and Tech., Academic Press, pp. 227–309 (1993).

    Google Scholar 

  15. W. K. Chu, J. W. Mayer, H. Muller, M.-A. Nicolet, and K. N. Tu, “Identification of the Dominant Diffusion Species in Silicide Formation,” Appl. Phys. Lett, 25(8), 454 (1974).

    Article  Google Scholar 

  16. F. M. D’Heurle and C. S. Peterson, “Formation of Thin Films of CoSi2: Nucleation and Diffusion Mechanisms,” Thin Solid Films, 128, 283 (1985).

    Article  Google Scholar 

  17. S. Yanagisawa and T. Fukuyama, “Reaction of Mo Thin Films on Si (100) Surfaces,” J. Electrochem. Soc., 127, 1150–1156 (1980).

    Article  Google Scholar 

  18. B. El-Kareh, “Ultrashallow Doped Film Requirements for Future Technologies,” J. Vac. Sci. Techn. Jan./Feb. (1994).

    Google Scholar 

  19. J. Hui, S. Wong, and J. Moll, “Specifi Contact Resistivity of TiSi2 to P + and N + Junctions,” IEEE Electron Dev. Lett, EDL-6(9), 479 (1985).

    Article  Google Scholar 

  20. J. Amano, K. Nauka, M. P. Scott, J. E. Turner, and R. Tsai, “Junction Leakage in Titanium Self-Aligned Silicide Devices,” Appl. Phys. Lett., 49, 737–739 (1986).

    Article  Google Scholar 

  21. M. Wittmer and T. E. Seidel, “The Redistribution of Implanted Dopants After Metal-Silicides Formation,” J. Appl. Phys., 49, 5826 (1978).

    Google Scholar 

  22. C. L. Chu, G. Chin, KSaraswat, S. S. Wong, and R. Dutton, “Technology Limitations f or N+/P+ Polycide Gate CMOS due to Lateral Dopant Diffusion in Silicide/Polysilicon Layers,” IEEE Electron Dev. Lett, EDL-12(12), 696 (1991).

    Article  Google Scholar 

  23. H. Jiang, M. Osburn, P. Smith, Z.-G. Xiao, D. Griffis, G. McGuire, and G. A. Rozgonyi, “Ultra Shallow Junction Formation Using Diffusion from Silicides: I. Silicide Formation, Dopant Implantation and Depth Profiling, II. Diffusion in Silicides and Evaporation, III. Diffusion into Silicon, Thermal Stability of Silicides, and Junction Integrity,” J. Electrochem. Soc., 139(1), 196–218 (1992).

    Article  Google Scholar 

  24. J. W. Honeycutt and G. A. Rozgonyi, “Enhanced Diffusion of Sb Doped Layer During Co and Ti Reactions with Silicon,” Appl. Phys. Lett, 58(12), 1302 (1991).

    Article  Google Scholar 

  25. M. Wittmer and K. N. Tu, “Low-Temperature Diffusion of Dopant Atoms in Silicon During Interfacial Silicide Formation,” Phys. Rev. 29(4), 2010 (1984).

    Article  Google Scholar 

  26. J. Amano, P. Merchant, T. R. Cass, J. N. Miller, and T. Koch, “Dopant Redistribution During Titanium Silicide Formation,” J. Appl. Phys., 59(8), 2689 (1986).

    Article  Google Scholar 

  27. S. Batra, K. Park, S. Yoganathan, J. Lee, S. Barnejee, S. Sun, and G. Lux, “Effects of Dopant Redistribution, Segregation, and Carrier Trapping in As-Implanted MOS Gates,” IEEE Trans. Electron Dev., ED-37(11), 2322 (1990).

    Article  Google Scholar 

  28. D. S. Wen, P. Smith, M. Osburn, and G. A. Rozgonyi, G. Lux, “Elimination of End-of-Range Shallow Junction Implantation Damage during CMOS Titanium Silicidation,” J. Electrochem. Soc., 136(2), 466–471 (1989).

    Article  Google Scholar 

  29. S. C. Chen, H. Tamura, K. Kinoshita, K. Inoue, K. Endo, and S. Nakamura, “Silicidation Reaction and Stress in Ti/Si,” Jpn. J. Appl. Phys., 31(2A), 201–205 (1992).

    Article  Google Scholar 

  30. C. M. Osburn, Q. F. Wang, M. Kellam, Canovai, P. L. Smith, G. E. McGuire, Z. G. Xiao, and G. A. Rozgonyi, “Incorporation of Metal Silicides and Refractory Metals in VLSI Technology,” Appl. Surf. Sci. 53, 291–312 (1991).

    Article  Google Scholar 

  31. Q. F. Wang, C. M. Osburn, P. L. Smith, C. A. Canovai, and G. E. McGuire, “Thermal Stability of Thin Submicrometer Lines of CoSi2,” J. Electrochem. Soc., 140(1), 200–205 (1993).

    Article  Google Scholar 

  32. H. Norstrom, K. Meax, and P. Vandenabeele, “Thermal Stability and Interface Bowing of Submicron TiSi2/Polycrystalline Silicon,” Thin Solid Films, 198, 53–66 (1991).

    Article  Google Scholar 

  33. J. B. Lasky, J. S. Nakos, O. J. Cain, and P. J. Geiss, “Comparison of Transformation to Low-Resistivity Phase and Agglomeration of TiSi2 and CoSi2,” IEEE Trans. Electron Dev., ED-38(2), 262–269 (1991).

    Article  Google Scholar 

  34. J. P. Gambino, E. G. Colgan, and B. Cunningham, “The Resistance and Morphology of Submicron TiSi2 and CoSi2 Lines on Polysilicon,” Abstract 216, p. 312, The Electrochem. Soc. Extended Abstracts, Phoenix, Arizona, Meeting, Oct. 13-17, 1991.

    Google Scholar 

  35. Q. F. Wang, J. Y. Tsai, C. M. Osburn, R. Chapman, and G. E. McGuire, “Improved Stability of Thin Cobalt Disilicide Films Using BF2 Implantation,” Appl. Phys. Lett., 61(24), 2920 (1992).

    Article  Google Scholar 

  36. B. S. Chen and M. C. Chen, “Thermal Stability of Cobalt Silicide Thin Films on Si(100),” J. Appl. Phys., 74(2), 1035–1039 (1993).

    Article  Google Scholar 

  37. D. C. Chen, S. S. Wong, P. V. Voorde, P. Merchant, T. R. Cass, J. Amano, and K.-Y. Chiu, “A New Device Interconnect Scheme for Sub-Micron VLSI,” IEDM Tech. Dig., p. 118 (1984).

    Google Scholar 

  38. A. A. Bos, N. S. Parekh, and A. G. M. Jonkers, “Formation of TiSi2 From Titanium and Amorphous Silicon Layers for Local Interconnect Technology,” Thin Solid Films, 197, 169 (1991).

    Article  Google Scholar 

  39. T. E. Tang, C.-C. Wei, R. A. Haken, T. C. Holloway, L. R. Hite, and T. G. W. Blake, “Titanium Nitride Local Interconnect Technology for VLSI,” IEEE Trans. Electron Dev., ED-34, 682 (1987).

    Article  Google Scholar 

  40. M. Wittmer, “Properties and Microelectronic Applications of Thin Films of Refractory Metal Nitrides,” J. Vac. Sci. Technol., A3, 1797 (1985).

    Google Scholar 

  41. T. Okamoto, K. Tsukamoto, M. Shimizu, Y. Mishiko, and T. Matsukawa, “Simultaneous Formation of TiN and TiSi2 by Rapid Lamp Annealing in NH3 Ambient for VLSI Contacts,” Proc. IEEE Symp. VLSI Technol., 51 (1986).

    Google Scholar 

  42. M. P. Lepstetter and J. M. Andrews, “Ohmic Contacts to Silicon,” in Ohmic Contacts to Semiconductors, B. Schwartz, Ed., The Electrochem. Soc., Princeton, New Jersey, p. 159 (1969).

    Google Scholar 

  43. K. P. MacWilliams and J. D. Plummer, “Device Physics and Technology of Complementary Silicon MESFETs for VLSI Applications,” IEEE Trans. Electron Dev., 38(12), 2619–2631 (1991).

    Article  Google Scholar 

  44. R. W. Mann, L. A. Clevenger, and Q. Z. Hong, “The C49 to C54-TiSi2 Transformation in Self Alalgned Silicide Applications,” J. Appl. Phys., 73(7), 3566–3568 (1993).

    Article  Google Scholar 

  45. J. F. Jongste, P. F. A. Alkemade, G. C. A. M. Janssen, and S. Radelaar, “Kinetics of the Formation of C49 TiSi2 from Ti Si Multilayers as Observed by In Situ Stress Measurements,” J. Appl. Phys., 74(6), 3869–3879 (1993).

    Article  Google Scholar 

  46. N. I. Morimoto, J. W. Swart, and H. G. Riella, “Analysis of the Mean Crystallite Size and Microstress in Titanium Silicide Thin Films,” J. Vac. Sci. Technol. B, 10(2), 586–590 (1992).

    Article  Google Scholar 

  47. N. H. Lin, R. J. Stoner, H. J. Maris, J. M. E. Harper, Cabrai, J. M. Halbout, and G. W. Rubloff, “Detection of Titanium Silicide Formation and Phase Transformation by Picosecond Ultrasonics,” Mater. Res. Soc. Proc. 221–226 (1992).

    Google Scholar 

  48. R. Sikora and W. Lundy, “Phase Transformation of Titanium Silicide as Measured by Ellipsometry,” J. Appl. Phys., 72(3), 1160–1163 (1992).

    Article  Google Scholar 

  49. R. J. Nemanich, J. Hyeongtag, C. A. Sukow, J. W. Honeycutt, and G. A. Rozgonyi, “Nucleation and Morphology of TiSi2 on Si,” Mater. Res. Soc. Proc, pp. 195–206 (1992).

    Google Scholar 

  50. M. Hiriuchi and K. Yamaguchi, “SOLID II: High-Voltage High-Gain Kilo-Angstrom Channel-Length CMOSFETs Using Silicide with Self-Aligned Ultra-Shallow (US) Junction,” IEEE Trans. Electron Dev., ED-33, 260–265 (1986).

    Article  Google Scholar 

  51. A. E. Morgan, E. K. Broadbent, M. Delfino, Coulman, and D. K. Sadana, “Characterization of a Self-Aligned Cobalt Silicide Process,” J. Electrochem. Soc., 134(4), 925 (1987).

    Article  Google Scholar 

  52. E. Nagaswa, H. Okabayashi, and M. Morimoto, “Mo-and Ti-Silicided Low-Resistance Shallow Junctions Formed Using the Ion Implantation Through Metal Technique, IEEE Trans. Electron Dev., ED-34(3), 581–586 (1987).

    Article  Google Scholar 

  53. T. Gessner, R. Reich, W. Unger, and W. Wolke, “The Influence of Rapid Thermal Processing on the Properties of MoSi2 Layers Formed by Using the Ion Implantation Through Metal Technique,” Thin Solid Films, 177, 225 (1989).

    Article  Google Scholar 

  54. D. L. Kwong, Y. H. Ku, S. K. Lee, and E. Lewis, “Silicided Shallow Junction Formation by Ion Implantation of Impurity Ions into Silicide Layers and Subsequent Drive-in,” J. Appl. Phys., 61(11), 5084 (1987).

    Article  Google Scholar 

  55. B.-Y. Tsui, J.-Y. Tsai, and M.-C. Chen, “Formation of PtSi-Contacted P + N Shallow Junctions by BF2 + Implantation and Low-Temperature Furnace Annealing,” J. Appl. Phys., 69(8), 4354–4363 (1991).

    Article  Google Scholar 

  56. F.C. Shone, K.C. Saraswat, and J. P. Plummer, “Formation of 0.1 μm N+/P and P+/N Junctions by Doped Silicide Technology,” IEDM Tech. Dig., 407 (1985).

    Google Scholar 

  57. R. Liu, D. S. Williams, and W. T. Lynch, “Mechanism for Process-Induced Leakage in Shallow Silicided Junctions,” IEDM Tech. Dig., p. 58 (1986).

    Google Scholar 

  58. C.M. Osburn, S. Chevacharoenkul, Q. F. Wang, K. Markus, and G. E. McGuire, “Materials and Device Issues in the Formation of Sub-100-nm Junctions,” Nucl. Inst. Meth., B74, 53–59 (1993).

    Google Scholar 

  59. C. Zaring, P. Gas, G. Stevensson, M. Oestling, and H. J. Whitlow, “Lattice Diffusion of Boron in Bulk Cobalt Silicide,” Thin Solid Films, 193/194, 244–247 (1990).

    Article  Google Scholar 

  60. R. Angelucci, M. Impronta, G. Pizzochero, G. Poggi, and A. Solmi, “Shallow Junction Formation Using MoSi2 as Diffusion Source,” Microelectron. Eng., 19(1-4), 673–678 (1992).

    Article  Google Scholar 

  61. S. M. Fisher, H. Chino, K. Maeda, and Y. Nishimoto, “Characterizing B, P, and Ge Doped Silicon Oxide Films for Interlevel Dielectrics,” S olid-State Technol, 36(9), 55–64 (1993).

    Google Scholar 

  62. A. C. Adams and D. Capio, “Planarization of Phosphorus-Doped Silicon Dioxide,” J. Electrochem. Soc., 128(2), 423–429 (1981).

    Article  Google Scholar 

  63. F. White, W. Hill, S. Esslinger, E. Payne, W. Cote, B. Chen, and K. Johnson, “Damascene Stud Local Interconnect in CMOS Technology,” IEDM Tech. Dig., 301 (1992).

    Google Scholar 

  64. J. S. H. Cho, H.-K. Kang, C. Ryu, and S. S. Wong, “Reliability of CVD Buried Interconnections,” IEDM Tech. Dig., 265 (1993)

    Google Scholar 

  65. R. Glang, “Vacuum Evaporation,” in Handbook of Thin Film technology, L. I. Maissel and R. Glang, Eds., p. 1–3, McGraw-Hill, New Yor (1983).

    Google Scholar 

  66. D. B. Fraser, “Metallization,” in VLSI Technology, S. M. Sze, Ed., McGrow-Hill, New York (1983).

    Google Scholar 

  67. B. Vollmer, T. Licata, D. Resaino, and J. Ryan,“Recent Advances in the Application of Collimated Sputtering,” Thin Solid Fims, 247, 104–111 (1994).

    Article  Google Scholar 

  68. M. Sakata, H. Shimamura, S. Kobayashi, T. Kawahito, T. Kamai, and K. Abe, “Sputtering Apparatus with Film Forming Directivity,” US Patent 4724060, 1988.

    Google Scholar 

  69. S. Rossnagel, D. Mikalsen, H. Kinoshita, and J. J. Cuomo, “Collimated Magnetron Sputter Deposition,” J. Vac. Sci. Technol. A, 9(2) 261–265 (1991).

    Article  Google Scholar 

  70. C. F. Powell, “Chemical Vapor Deposited Metals,” in Vapor Deposition, C. F. Powell, J. H. Oxley, and J. M. Blocher, Eds., Chap. 10, John Wiley and Sons, New York (1966).

    Google Scholar 

  71. R. A. Levy and M. L. Green, “Low Pressure Chemical Vapor Deposition of Tunsten and Aluminum for VLSI Applications,” J. Electrochem. Soc., 134, 37C–49C (1987).

    Article  Google Scholar 

  72. S. Sachdev and R. Castellano, “CVD Tungsten and Tungsten Silicide for VLSI Applications,” Semiconductor International, 306–310, May 1985.

    Google Scholar 

  73. J. M. Shaw and J. A. Amick, “Vapor Deposited Tungsten for Devices,” RCA Review, 31,306 (1970).

    Google Scholar 

  74. T. Ohba, S.-I. Inoue, and M. Maeda, “Selective CVD Tungsten Silicide f or VLSI Applications,” IEDM Tech. Dig., 213 (1987)

    Google Scholar 

  75. H. Kotani, T. Tsutsumi, J. Komori, and S. Nagao, “A Highly reliable Selective CVD-W Utilizing SiH4 Reduction for VLSI Contacts,” IEDM Tech. Dig., 217 (1987)

    Google Scholar 

  76. V. V. Lee and S. Verdonckt-Vanderbroek, “A Selective CVD Tungsten Local Interconnect technology,” IEDM Tech. Dig., 450 (1988)

    Google Scholar 

  77. D. R. Bradbury, J. E. Turner, K. Nanka, and K. Y. Chiu, “Selective CVD Tungsten as an Alternative to Blanket Tungsten for Submicron Plug Applications on VLSI Circuits,” IEDM Tech. Dig., 273 (1991)

    Google Scholar 

  78. R. S. Blewer, “Progress in LPCVD Tungsten for Advanced Microelectronics Applications,” Solid-State Technol., 117–126, Nov. 1986.

    Google Scholar 

  79. E. K. Broadbent and W. T. Stacy, “Selective Tungsten Processing by Low Process CVD Pressure,” Solid-State Technol., 51–59, Dec. 1985.

    Google Scholar 

  80. T. Mariya and H. Itoh, “Selective CVD Tungsten and its Applications to VLSI,” in Tungsten and other Refractory Metals for VLSI Applications, R. S. Blewer, Ed., 21–32, MRS, Pittsburgh, Pennsylvania (1986).

    Google Scholar 

  81. J. A. Yarmoff and F. R. McFeely, “Mechanism for Chemical Vapor Deposition of Tungsten on Silicon from Tungsten Hexafluoride,” J. Appl. Phys. 63(11), 5213–5219 (1988).

    Article  Google Scholar 

  82. R. Foster, L. Lane, and S. Tseng, “Mass Spectroscopic Studies on Selective Tungsten Deposition-Mechanism and Reliability,” in Tungsten and other Refractory Metals for VLSI Applications III, V. A. Wells, Ed., Material Res. Soc., Pittburgh, Pennsylvania, 159–169 (1988).

    Google Scholar 

  83. D. K. Ferry, M. N. Kozicki, and G. P. Raupp, “Some Fundamental Issues on Metallization in VLSI,” Proc. SPIE, Metallization: Performance and Reliability Issues for VLSI and ULSI, 1596, 2 (1991).

    Google Scholar 

  84. M. J. Cooke, R. A. Heinecke, R. Stern, and J. W. Maes, “LPCVD of Aluminum and Al-Si Alloys for Semiconductor Metallization,” Solid-State Tech., 62–65, Dec. 1982.

    Google Scholar 

  85. T. Kato, T. Ito, and M. Maeda, “Chemical Vapor Deposition of Aluminum Enhanced by Magnetron Plasma, J. Electrochem. Soc., 135(2), 455–459 (1988).

    Article  Google Scholar 

  86. T. Katagiri, E. Kondoh, N. Takeyasu, T. Nakano, H. Yamamoto, and T. Onta, “Metalorganic Chemical Vapor Deposition of Aluminum-Copper Alloy Film,” Jpn. J. Appl. Phys. 32, L1078-L1080 (1993).

    Google Scholar 

  87. N. Takeyasu, Y. Kawano, T. Katagiri, E. Kondoh, Y. Yamamoto, and T. Onta, “Characterization of Direct-Contact Via Plug Formed by Use of Selective Al-CVD,” Extended Abstracts of the 1993 Interni. Conf. on Solid State Dev. and Mat, 180–182 (1993).

    Google Scholar 

  88. T. Amazawa, H. Nakamura, and Y. Arita, “Selective Growth of Aluminum Using a Novel CVD System,” IEDM Tech. Dig., 442 (1988).

    Google Scholar 

  89. T. Sakurai and T. Serikawa, “Lift-off Metallization of Sputtered Al Alloy Films,” J. Electrochem. Soc., 126, 1257 (1979).

    Article  Google Scholar 

  90. T. Batchelder, “A Simple Metal Lift-off Process,” Solid-State Technol., 25, 111 (1982).

    Google Scholar 

  91. M. Inoue, K. Hashizume, and H. Tsuchikawa, “The Properties of Aluminum Thin Films Sputter Deposited at Elevated Temperature,” J. Vac Sci Techn., A6(3), 1636–1641 (1988).

    Google Scholar 

  92. H. Ono, Y. Ushiko, and T. Yoda, “Development of a Planarized Ai-Si Contact Filling Technology,” Proc. IEEE VMIC, 76–82 (1990).

    Google Scholar 

  93. S. Park, S. J. Lee, J. H. Park, J. H. Sohn, D. Chin, and J. G. Lee, “Al PLAPH (Aluminum PLANarization by Post Heating Process for Planarized Double Level CMOS Applications,” Proc.IEEE VMIC, 326–328 (1991).

    Google Scholar 

  94. K. Kukuta, T. Kikkawa, and M. Aoki, “Al Ge Refiow Sputtering for Submicron Contact Hole Filling,” Proc. IEEE VMIC, 163–169 (1991).

    Google Scholar 

  95. C. W. Kaanta, S. G. Bombardier, W. J. Cote, W. R. ill, G. G. J. Kerszykowski, H. S. Landis, D. J. Poindexter, C. W. Pollard, G. H. Ross, J. G. Ryan, S. Wolff, and J. E. Cronin, “Dual Damascene: A ULSI Wiring Technology,” Proceeding of the 8th Intnl. Multilevel Interconnect Conf., 144–152 (1991).

    Google Scholar 

  96. G. C. Smith and A. J. Purdes, “Sidewall-Tapered Oxide by Plasma-Enhanced Chemical Vapor Deposition,” J. Electrochem. Soc., 132, 2721–2725 (1985).

    Article  Google Scholar 

  97. H. Kotani, M. Matsuura, A. Fujii, H. Genjou, and S. Nagao, “Low-Temperature APCVD Oxide Using TEOS-Ozone Chemistry for Multilevel Interconnects,” IEDM Tech. Dig., 669 (1989).

    Google Scholar 

  98. M. Suzuki, T. Homma, H. Koga, T. Tanigawa, and Y. Murao, “A Fully Planarized Multilevel Interconnection Technology Using Selective TEOS-Ozone APCVD,” IEDM Tech. Dig., 293 (1992).

    Google Scholar 

  99. M. B. Anand, T. Matsuno, M. Murota, H. Shibata, M. Kakumu, K. Mori, K. Otsuka, M. Takahashi, H. Kaji, M. Kodera, K. Itoh, R. Aoki, and M. Nagata, “Fully Integrated Back End of the Line Interconnect Process for High Performance ULSIs,” Proc. IEEE VMIC, 15 (1994).

    Google Scholar 

  100. L. B. Vines and S. K. Gupta, “Interlevel Dielectric Planarization with Spin-On Glass Films,” Proc. IEEE VMIC, 506–515 (1986).

    Google Scholar 

  101. C. Chiang and D. B. Fraser, “Understanding of Spin-On Glass (SOG) Properties from their Molecular Structure,” Proc. IEEE VMIC, 397–403 (1989).

    Google Scholar 

  102. S. Lee, K. Lee, H. Oh, Oh, Y.-W. Kim, D. Kim, and B. Kim, “Multilevel Metallization for ASIC Technology,” Proc. IEEE VMIC, 59 (1994).

    Google Scholar 

  103. J N. Lifshitz and M. R. Pinto, “Spin-On-Glasses in Silicon IC: Plague or Panacea?” Proc. SPIE, Metallization: Performance and Reliability Issues for VLSI and ULSI, 1596, 96–105 (1991).

    Google Scholar 

  104. K. Wang, L. M. Liu, H. Cheng, H. Huang, and M. S. Lin, “A Study of Plasma Treatments of Siloxane SOG,” Proc. IEEE VMIC, 101 (1994).

    Google Scholar 

  105. N. Rutherford, M. Camenzind, and A. Belic, “Outgassing and Oxidative Damage in Non-Etchback Siloxane SOG Processes, Proc. IEEE VMIC, 141 (1993).

    Google Scholar 

  106. H. Eggers and K. Hieber, “Recent Development in Multilevel Interconnect technology,” IEDM Tech. Dig., 200 (1987).

    Google Scholar 

  107. A. B. Glaser and G. E. Subak-Sharpe, “Integrated Circuit Engineering,” Addison-Wesley, Reading, Massachusetts (1979).

    Google Scholar 

  108. J. Black, “Electromigration Failure Modes in Aluminum Metallization for Semiconductor Devices,” Proc. IEEE, 57(9), 1587–1594 (1969).

    Article  Google Scholar 

  109. F. M. d’Heurle, “Electromigration and Failure Modes in Electronics: An Introduction,” Proc. IEEE, 59, 1409 (1971).

    Article  Google Scholar 

  110. J. Black, “Physics of Electromigration,” Proc. of the 12th Reliability Physics Symposium, p. 142, IEEE New York (1974).

    Chapter  Google Scholar 

  111. R. Holm, Electrical Contacts, Theory and Application, Springer Verlag, New York (1967).

    Google Scholar 

  112. S. Vaidya, D. B. Fraser, and A. K. Sinha, “Electromigration Resistance of Fine Line Al,” Proc. of the 12th Reliability Physics Symposium, p. 165, IEEE New York (1980).

    Google Scholar 

  113. T. Ohmi, T. Hoshi, T. Yoshie, T. Takewaki, M. Otsuki, T. Shibata, and T. Nitta “Large-Electromigration-resistance Copper Interconnect Technology for Sub-Half Micron ULSI’s,” IEDM Tech. Dig., 285 (1991).

    Google Scholar 

  114. I. Ames, F. d’Heurle, and R. Horstmann, “Reduction of Electromigration in Aluminum Films by Copper Doping,” IBM J. Res. Dev., 14, 461–463 (1970).

    Article  Google Scholar 

  115. F. M. d’Heurle, N. G. Ainslie, A. Ganguilee, and M. C. Shine, “Activation Energy for Electgromigration Failure in Al Films Containing J. Vac. Sci tech., 9, 289–293 (1972).

    Article  Google Scholar 

  116. R. Rosenberg, “Inhibition of Electromigration Damage in Thin Films,” J. Vac. Sci. tech., 9, 263–270 (1972).

    Article  Google Scholar 

  117. A Gangulee and F. M. d’Heurle, “Effect of Alloy Additions on Electromigration Failure in Thin Al Films,” Appl. Phys. Lett, 19, 76 (1971).

    Article  Google Scholar 

  118. T. Kikkawa, H. Aoki, E. Ikawa, and J. Dryan, “A Quarter-Micron Interconnection technology Using Al-Si-Cu/TiN Alternate Layers,” IEDM Tech. Dig., 281 (1991).

    Google Scholar 

  119. J. J. Estabil, H. S. Rathore, and E. N. Levine, “Electromigration Improvements with Titanium Underlay and Overlay Metallurgy,” Proc. IEEE VMIC, 292, 1991.

    Google Scholar 

  120. K. P. Rodbell, P. W. DeHaven, and J. D. Mis, “Electromigration Behavior in Layerd Ti\AlCu\Ti Films and its Dependence on Intermetallic Structure,” Material Reliability Issues in Microelectronics Symp., 91–97, Anaheim, California, May 1991.

    Google Scholar 

  121. M Kageyama, K. Hashimoto, and H. Onoda, “Formation of Texture Controlled Aluminum and its Migration Performance in Al Si/TiN Stacked Structure,” Proc. IEEE IRPS, 97–101 (1991).

    Google Scholar 

  122. H. S. Rathore, R. G. Filippi, R. A. Wachnik, J. J. Estabil, and T. Kwok, “Electromigration and Current-Carrying Implications for Aluminum-Based Metallurgy with Tungsten Stud-Via Interconnections,” Proc. SPIE, Submicron Metallization, 1805, 251–262 (1992).

    Google Scholar 

  123. W. R. Runyan and K. E. Bean Semiconductor Integrated Circuit Processing Technology, Addison-Wessley, Reading, Massachusetts (1990).

    Google Scholar 

  124. P. Ghate, “Reliability of VLSI Interconnections,” Proc. American Insti. Phys. Conf., 138, New York (1986).

    Google Scholar 

  125. S. K. Groothuis and S. R. Pollack, “Stress Related Failures Causing Open Metallization,” Proc. IEEE IRPS, 1–8 (1987).

    Google Scholar 

  126. T. D. Sullivan, J. G. Ryan, J. R. Riendeau, and D. Bouldin, “Stress-Induced Voiding In Aluminum Alloy Metallization,” Proc. SPIE, Metallization: Performance and Reliability Issues for VLSI and ULSI, 1596, 83–95 (1991).

    Google Scholar 

  127. J. Curry, G. Fitzgibbon, Y. Guan, R. Muollo, G. Nelson, and A. Thoma, “New Failure Mechanism in Sputtered Al-Si Films,” Proc. IEEE IRPS, 22, 6–8 (1984).

    Google Scholar 

  128. J. G. Ryan, J. B. Riendeau, S. E. Shore, G. J. Slusser, D. Beyar, D. P. Bouldin, and T. D. Sullivan, “The Effect of Alloying on Stress-Induced Void Formation in Al Based Metallization,” J. Vac. Sci. Techn., A8, 1474–1479 (1990).

    Google Scholar 

  129. M. G. Fernandes, H. Kawasaki, J. L. Klein, D. Jawarani, R. Subrahmanyan, K. Yu, and F. Pintchovski, “Characterization of Stress Migration in Sub-Micron Metal Interconnects,” American Institute of Physics Conf. Proc, 305, 153–164 (1993).

    Google Scholar 

  130. M. A. Korhonen, C. A. Pszkiet, and C.-Y. Li, “Mechanics of Thermal Stress Relaxation and Stress Induced Voiding in Narrow Aluminum Based Metallizations,” J. Appl. Phys., A8, 1474–1479 (1990).

    Google Scholar 

  131. S. Shima, H. Ito, and S. Shingubara, “Suppressing Stress-Induced and Electromigration Failures with Al/Al Stacked Structures,” IEEE Symp. VLSI Techn., 5A1, 27–28 (1990).

    Google Scholar 

  132. H. Koelmans, “Metallization Corrosion in Si Devices by Moisture Induced Electrolysis,” Proc. IEEE IRPS, 168–171 (1974).

    Google Scholar 

  133. W. M. Paulson and R. W. Kirk, “The Effects of Phosphorus-Doped Passivation Glasses on the Corrosion of Aluminum,” Proc. IEEE IRPS, 172–179 (1974).

    Google Scholar 

  134. N. Nagasima et al., “Interaction Between Phosphosilicate Glass Films and Water,” J. Electrochem Soc., 121, 434–438 (1974).

    Article  Google Scholar 

  135. S. L. Hsu, L. M. Liu, C. H. Fang, S. L. Ying, T. L. Chen, M. S. Lin, and C. Y. Chang, “Field Inversion Created in the CMOS Double Metal Process due to PETEOS and SOG Interactions,” IEEE Trans. Electron Dev., 40(1), 49–53 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ryan, J.G. (1995). Contact and Interconnect Technology. In: Fundamentals of Semiconductor Processing Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2209-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2209-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5927-2

  • Online ISBN: 978-1-4615-2209-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics