The electrical properties of semiconductor crystals can be modified predictably by introducing controllable amounts of dopant impurities into substitutional sites of the crystal. In silicon, for example, the most electronically active substitutional impurities are elements from group III (boron) and group V (arsenic, phosphorus, antimony) of the periodic table. When boron is in excess, holes are created for conduction and the crystal is said to be p-type. For excess arsenic, phosphorus, or antimony, free electrons are created for conduction and the crystal is called p-type. The most commonly used methods to introduce impurities into a semiconductor are doping during crystal or epitaxial growth (Chaps. 1,3), ion implantation, and diffusion. The basic principle of ion implantation in semiconductor technologies is described by Shockley [1]. It is a low-temperature process in which ionized dopants are accelerated to energies high enough so that when they impact on a target wafer’s surface they penetrate to a certain depth. Solid-state diffusion describes the method of introducing impurities into the wafer and/or redistributing them within the solid material by activating their motion at elevated temperature.


Amorphous Layer Target Atom Nuclear Collision Projected Range Implantation Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W. Shockley, “Forming Semiconductor Devices by Ionic Bombardment,” U.S. Patent 2,787, 564, filed Oct. 28, 1954.Google Scholar
  2. [2]
    H. Ryssel and I. Ruge, Ion Implantation, John Wiley (1986).Google Scholar
  3. [3]
    R. B. Simonton, “Ion Source Operation and Maintenance in a Semiconductor Production Environment,” in Ion Implantation Technology, J. F. Ziegler, Ed., North Holland (1992).Google Scholar
  4. [4]
    D. Aitken, “Ion Sources,” in Ion Implantation Techniques, H. Ryssel and H. Glawischnig, Eds., Springer-Verlag, 23–71, New York (1982).Google Scholar
  5. [5]
    A. Axmann, “Ionizable Materials to Produce Ions for Implantation,” Solid-State Technology, 17(11), 36 (Nov. 1974)Google Scholar
  6. [6]
    K. Brack, W. Euen and D. Hagmann, “Discharge of P 2+ Ions in the Beamline of Medium Current Implanters,” Nucl. Instr. and Methods in Phys. Res., B21, 405 (1987).CrossRefGoogle Scholar
  7. [7]
    P. Spinelli, J. Escaron, A. Soubie and M. Bruel, “High Energy Ion Implantation for C-MOS Isolation n-Wells Technology: Problems Related to the Use of Multicharged Phosphorus Ions in an Industrial Context,” Nucl. Instr. and Meth. in Phys. Res., B6, 283, North-Holland (1985).CrossRefGoogle Scholar
  8. [8]
    P. J. Wright, M. Wong and K.C. Saraswat, “The Effect of Fluorine on Gate Dielectric Properties,” IEDM Tech. Digest, p. 574 (1987).Google Scholar
  9. [9]
    M. Y. Tsai and B. G. Streetman, “Recrystallization of Implanted Amorphous Silicon Layers. I. Electrical Properties of Silicon Implanted with BFf or Si + + B+” J. Appl. Phys., 50(1), 183 (1979).CrossRefGoogle Scholar
  10. [10]
    G. Dearnaley, J. H. Freeman, R. S. Nelson, J. Stephen, Ion Implantation, North Holland, (1973).Google Scholar
  11. [11]
    R. G. Wilson and G. R. Brewer, Ion Beams, John Wiley (1973).Google Scholar
  12. [12]
    J. H. Freeman, Ion Implantation, G. Dearnaley, J. H. Freeman, J. Stephen, Eds., North Holland, p. 369 (1973).Google Scholar
  13. [13]
    N. Sakudo, “Microwave Ion Source for Ion Implantation,” Nuc. Instr. and Meth. Phys. Res. B21, 168–177 (1987).CrossRefGoogle Scholar
  14. [14]
    K. G. Stephens, “Ion Source Fundamentals,” in Handbook of Ion Implantation Technology, J. F. Ziegler, Ed., p. 455, North Holland, Amsterdam (1992).Google Scholar
  15. [15]
    J. H. Freeman, “A New Ion Source for Electromagnetic Isotope Separators,” Nucl. Instr. Meth. 22, 306 (1963).CrossRefGoogle Scholar
  16. [16]
    N. White, “Ion Sources for Use in Ion Implantation,” Nucl. Meth. Phys. Res. B37/38, 78 (1989).CrossRefGoogle Scholar
  17. [17]
    R. Simonton and F. Sinclair, “Emerging Ion Implantation Processes for the 1990’s, ” Advanced Ion Implantation Survey Report, Eaton Corp., Report No. 8500208 (1990).Google Scholar
  18. [18]
    J. O’Connor, Genus Corp., private communication, June 1993.Google Scholar
  19. [19]
    K. H. Purser, M. Cleland, H. Taylor, and T. H. Smick, “The IONEX MeV Implantation System,” SPIE, 530, 14 (1985).CrossRefGoogle Scholar
  20. [20]
    J. O’Connor. Genus Corp., private communication, June 1993.Google Scholar
  21. [21]
    A. B. El-Kareh and J. C. El-Kareh Electron Beam Lenses and Optics, Vols. 1 and 2, Academic Press, New York (1970).Google Scholar
  22. [22]
    G. Ryding and A. B. Wittkower, “Industrial Ion Implantation Machines,” IEEE Trans. Manuf. Tech., MTF-4(1), 21–31 (1975).CrossRefGoogle Scholar
  23. [23]
    A. J. T Holmes, “Theoretical and Experimental Study of Space Charge in Intense Ion Beams,” Phys. Rev. A19(1), 389–407 (1979).Google Scholar
  24. [24]
    M. E. Mack, “Wafer Cooling and Wafer Charging,” in Handbook of Ion Implantation Technology, J. F. Ziegler, Ed., p. 599, North-Holland (1992).Google Scholar
  25. [25]
    V. Benveniste, in Ion Implantation Technology, M. I. Current, N. W. Cheung, W. Weisenberg, and B. Kirby, Eds., p. 366, North Holland Physics, Amsterdam (1987).Google Scholar
  26. [26]
    M. King and P. H. Rose, “Experiments on Gas Cooling of Wafers,” Nuol. Instr. Meth., 189, 169–173 (1981).CrossRefGoogle Scholar
  27. [27]
    D. C. Evans, in Ion Implantation Technology, M. I. Current, N. W. Cheung, W. Weisenberg, and B. Kirby, Eds., p. 385, North Holland Physics, Amsterdam (1987).Google Scholar
  28. [28]
    P. D. Parry, “Localized Substrate Heating During Ion Implantation,” J. Vac. Sci. Tech. 15(1), 111–115 (1978).CrossRefGoogle Scholar
  29. [29]
    J. W. Mayer, L. Erikson and J. A. Davies, Ion Implantation in Semiconductors, Academic Press, p. 24, New York (1970).Google Scholar
  30. [30]
    J. Lindhard, M. Scharff, and H. Schiott, “Range Concepts and Heavy Ion Ranges,” Mat.-Fys.Med. Dan.Vid Selsk, 33(14), 1 (1963).Google Scholar
  31. [31]
    B. Smith, Ion Implantation Range Data for Silicon and Germanium Device Technologies, Research Studies, Forest Grove, Oregon, 1977.Google Scholar
  32. [32]
    J. F. Ziegler “Ion Implantation Physics,” in Handbook of Ion Implantation Technologies, J. Z. Zielger, Ed., p. 1, North Holland, New York (1992).Google Scholar
  33. [33]
    J. P. Biersack and L. G. Haggmark, “A Monte Carlo Computer Program for the Transport of Energetic Ions in Amorphous Targets, Nucl. Instr. and Meth, 174, 257 (1980).CrossRefGoogle Scholar
  34. [34]
    J. F. Gibbons, W. S. Johnson, and S. W. Mylroie, Projected Range Statistics, Dowden, Hutchison, and Ross, Eds., Academic Press, Vol. 2, New York (1975).Google Scholar
  35. [35]
    J. F. Ziegler, “The Stopping and Range of Ions in Solids,” Ion Implantation Science and Technology, J. F. Ziegler Ed., Academic Press, (1984)Google Scholar
  36. [36]
    J. F. Ziegler, J. P. Biersack, and U. Littmark, “The Stopping and Range of Ions in Solids,” in The Stopping and Ranges of Ions in Matter, J. F. Ziegler, Ed., Vol.1, Pergamon Press, New York (1985).Google Scholar
  37. [37]
    T. E. Seidel, “Ion Implantation,” VLSI Technology, S. M. Sze, Ed., p. 219, McGraw-Hill, New York (1983).Google Scholar
  38. [38]
    B. Mylroie and J.F. Gibbons, “Computation of Third Central Moments for Projected Range Distributions of Common Ion-Implanted Dopants in Silicon,” Ion Implantation in Semiconductors and other Materials, B. L. Crowder, Ed., Plenum Press, New York 1973Google Scholar
  39. [39]
    J. F. Gibbons and S. Mylroie, “Estimation of Impurity Profiles in Ion-Implanted Amorphous Targets Using Joint Half-Gaussian Distributions,” Appl. Phys. Lett., 22(6), 568–569 (1973).CrossRefGoogle Scholar
  40. [40]
    M. G. Kendall and A. Stuart, The Advanced Theory of Statistics, Charles Griffin, London (1958).Google Scholar
  41. [41]
    W. K. Hofker, “Implantation of Boron in Silicon,” Philips Res. Repts., Suppl #8, 1–121 (1975)Google Scholar
  42. [42]
    H. Ryssel, “Range Distributions,” in Ion Implantation Techniques, H. Ryssel and H. Glawischnig, Eds., Springer Series in Electrophysics, New York, 10, 177 (1982).Google Scholar
  43. [43]
    R. Simonton and A. F. Tasch, “Channeling Effects in Ion Implantation,” in Handbook of Ion Implantation Technology, J. B. Ziegler, Ed., p. 119, North Holland, new York (1992).Google Scholar
  44. [44]
    H. Ryssel, H. Kranz, K. Muller, R. A. Henkelmannn, and J. Biersack, “Comparison of Range and Range Straggling of implanted 10B and 11B in Silicon,” Appl. Phys. Lett., 30(4), 399–401 (1977).CrossRefGoogle Scholar
  45. [45]
    L. A. Christel, J. F. Gibbons, and S. Mylroie, “Application of the Boltzmann Transport Equation to Ion Range and Damage Distributions in Multilayered Targets,” J. Appl. Phys., 51(12), 6176–6182 (1980).CrossRefGoogle Scholar
  46. [46]
    D. V. Morgan, Ed., Channeling, John Wiley and Sons, London (1973).Google Scholar
  47. [47]
    J. F. Ziegler, “The Channeling of Ions near the <100> Axis,” in Ion Beam processing in Advanced Electronic Materials and Device Technology, B. R. Appleton et. al, Eds., Vol. 45, Mater. Res. Soc. (1985).Google Scholar
  48. [48]
    K. V. Brannon and R. F. Lever, “Computational Investigation of Channeling of Boron in Silicon,” Electrochem. Soc. Ext Abst. 86-2, p. 813 (1986).Google Scholar
  49. [49]
    R. A. Moline and G. W. Reutlinger, “Phosphorus Channeled in Silicon: Profiles and Electrical Activity,” in Ion Implantation in Semiconductors, I. Ruge and J. Graul, Eds., p. 58, Springer Verlag, New York (1971).CrossRefGoogle Scholar
  50. [50]
    T. E. Seidel, “Distribution of Boron Implanted Silicon,” in Ion Implantation in Semiconductors, I. Ruge and J. Graul, Eds., p. 47, Springer Verlag, New York (1971).CrossRefGoogle Scholar
  51. [51]
    G. Dearnaley, J. H. Freeman, G. A. Gard, and M. A. Wilkins, “Implantation Profiles of 32P Channeled into Silicon Crystals,” Can. J. Phys., 46(6), 587–595 (1968).CrossRefGoogle Scholar
  52. [52]
    M. Miyake, M. Yoshizawa and H. Harada, “Incidence Angle Dependence of Planar Channeling in Boron Ion Implantation into Silicon,” J. Electrochem. Soc., 130, 716–719, (1973).CrossRefGoogle Scholar
  53. [53]
    M. I. Current, N. L. Turner, Smith and D. Crane, “Planar Channeling Effects in Si(1OO),” Proc. Fifth Intern. Conf. on Ion Implantation Equipment & Techn., p. 336 North-Holland (1984)Google Scholar
  54. [54]
    I. Suni, et al., “Effect of Preamorphization Depth on Channeling Tails in + and As + Implanted Silicon,” in Ion Beam Processes in Advanced Electronic Materials and Device Technology, Vol. 45, Mater. Res. Soc., 1985.Google Scholar
  55. [55]
    H. Russel, J. Lorenz, and K. Hoffmann, “Models of Implantation into Multilayered Targets,” Appl. Phys. A, 41, 201 (1986).CrossRefGoogle Scholar
  56. [56]
    H. Ishihara, H. Furukawa, S. Yamada and J. Kawamura, “Projected Range Distribution of Implanted Ions in a Double-Layer Substrate,” in Ion Implantation in Semiconductors, S. Namba, Ed., p. 423–428, Plenum Press, New York (1975).CrossRefGoogle Scholar
  57. [57]
    K. Gamo, T. Ukegawa, and S. Namba, “Field Ion Sources Using Eutectic Alloys,” Jpn. J. Appl. Phys., 19(7), L379–L382 (1980).CrossRefGoogle Scholar
  58. [58]
    R. L. Kubena, L. Anderson, R. L. Seliger, R. A. Juliens, and E. H. Stevens, “FET Fabrication Using Maskless Ion Implantation,” J. Vac. Sci. Technol., 19(4), 916–920 (1981).CrossRefGoogle Scholar
  59. [59]
    F. H. Dill and J. M. Shaw, “Thermal Effects on the Photoresist AZ1350J,” IBM J. Res. Develop., p. 210, May 1977.Google Scholar
  60. [60]
    P. Burggraaf, “Resist Implant Problems: Some Solved, Others Not,” Semiconductor International, p. 66, June 1992.Google Scholar
  61. [61]
    Y. Okuyama, T. Hashimoto, and T. Koguchi, “High Dose Implantation into Photoresist,” J. Electrochem. Soc., 125(8), 1293 (1978).CrossRefGoogle Scholar
  62. [62]
    T.C. Smith, “Wafer Cooling and Photoresist Masking Problems in Ion Implantation,” in Ion Implantation Equipment and Techniques, H. Ryssel and H. Glawischnig, Eds., p. 196, Springer-Verlag, New York (1983).CrossRefGoogle Scholar
  63. [63]
    T. C. Smith, “Photoresist Problems and Particle Contamination,” in Ion Implantation Science and Technology, 2nd Edition, J. F. Ziegler, Ed., p. 345, Academic Press, San Diego, CA (1988).Google Scholar
  64. [64]
    Ion Implantation,” Practical VLSI Fabrication for the 90s, R. Bowman, G. Fry, J. Griffin, R. Potter, and R. Skinner, Eds., Integrated Circuit Engineering Corp., Arizona (1990).Google Scholar
  65. [65]
    S. Furukawa, H. Matsumura and H. Ishiwara, “Theoretical Consideration on Lateral Spread of Implanted Ions,” Jpn. J. Appl. Phys. 11, 134, (1972).Google Scholar
  66. [66]
    H. Runge, “Distribution of Implanted Ions under Arbitrary Shaped Mask Edges,” Phys. Status Solidi (a) 39, 595–599 (1977).CrossRefGoogle Scholar
  67. [67]
    Y. Akasaka, K. Horie, K. Yoneda, T. Sakurai, H. Nishi, S. Kawabe, and E. Toni, “Depth Distributions of Defects and Impurities on 100-keV su+ Ion Implanted Silicon,” J. Appl. Phys., 44(1), 220–224 (1973).CrossRefGoogle Scholar
  68. 68]
    R. Bauerlein, in Radiation Damage in Solids, D.S. Bellington, Ed., p. 358, Academic Press New York (1969).Google Scholar
  69. [69]
    J. F. Gibbons, “Ion Implantation in Semiconductors-Part II, Damage Production and Annealing,” Proc. IEEE, 60, 1062 (1972).CrossRefGoogle Scholar
  70. [70]
    D. K. Brice, “Ion Implantation Depth Distributions: Energy Deposition into Atomic Processes and Ion Locations,” Appl. Phys. Lett., 16(3), 103–106 (1970)CrossRefGoogle Scholar
  71. [71]
    W. P. Maszara and G. A. Rozgonyi, “Kinetics of Damage Production in Silicon during Self-Implantation,” J. Appl. Phys. 60, 2310 (1986).CrossRefGoogle Scholar
  72. [72]
    B. L. Crowder, “The Role of Damage in the Annealing Characteristics of Ion Implanted Si,” J. Electrochem. Soc. 117(5), 671–674 (1970).CrossRefGoogle Scholar
  73. [73]
    F. H. Eisen and B. Welch, “Flux and Fluence Dependence of Disorder Produced during Implantation of 11 B in Silicon,” in First International Conference on Ion Implantation, F. Eisen and L. Chadderton, Eds., Gordon and Breach, 459–464, New York (1971).Google Scholar
  74. [74]
    F.F. Morehead and B. L. Crowder, “A Model for the formation of Amorphous Silicon by Ion Implantation,” in First International Conference on Ion Implantation, F. Eisen and L. Chadderton, Eds., Gordon and Breach, p. 25, New York (1971).Google Scholar
  75. [75]
    B. L. Crowder, R. S. Title, M. H. Brodsky, and G. D. Pettit, “ESR and Optical Absorption Studies of Ion-Implanted Silicon,” Appl. Phys. Lett 16(5), 205–208 (1970).CrossRefGoogle Scholar
  76. [76]
    J. E. Westmoreland, J. W. Mayer, F. H. Eisen, and B. Welch, “Production and Annealing of Lattice Disorder in Silicon by 200-keV Boron Ions,” Appl. Phys. Lett. 15(9), 308–310 (1969).CrossRefGoogle Scholar
  77. [77]
    G. H. Kinchin and R. S. Pease, “The Displacement of Atoms in Solids by Radiation,” Rep. Prog. Phys. 18, 1 (1955)CrossRefGoogle Scholar
  78. [78]
    W. L. Brown, “Collision Cascades, Ionization, Spikes and Energy Transfer,” Mat Sci. Res. Symp. 51, 53 (1985).CrossRefGoogle Scholar
  79. [79]
    P. V. Pavlov, D. I. Tetel’baum, E. I. Zorin, and V. I. Alekseev, “Distribution of Implanted Atoms and Radiation Defects in the Ion Bombardment of Silicon (Monte Carlo Calculation Method). Sov. Phys.-Solid State 8(9), 2141–2146 (1967).Google Scholar
  80. [80]
    T. Hirao, G. Fuse, K. Inoue, S. Takayanagi, Y. Yaegashi, and S. Ichikawa, “Electrical Properties of Si Implanted with As through SiO 2 Films,” J. Appl. Phys. 4 262 (1980).CrossRefGoogle Scholar
  81. [81]
    T.C. Cass and V. G. K. Reddi, “Anomalous Residual Damage in Si after Annealing ofThrough-OxideArsenic Implantation,” Appl. Phys. Lett, 23(5), 268–270 (1973).CrossRefGoogle Scholar
  82. [82]
    R. Moline and A. G. Cullis, “Residual Defects in Si Produced by Recoil Implantation of Oxygen,” Appl. Phys. Lett., 26(10), 551–553 (1975).CrossRefGoogle Scholar
  83. [83]
    T. Y. Tan, “Dislocation Nucleation Models from Point Defect Condensations in Silicon and Germanium,” Mat. Res. Soc. Symp. Proc. 2, 163–178 (1981).CrossRefGoogle Scholar
  84. [84]
    S. Mader, “Ion Implantation Damage in Silicon,” Ion Implantation Science and Technology, J.F. Ziegler, Ed., Academic Press, (1984)Google Scholar
  85. [85]
    W. X. Lu, Y. H. Qian, R. H. Tian, Z. L. Wang, R. J. Schreutelkamp, J. R. Liefting, and F. W. Saris, “Reduction of Secondary Defect Formation in MeV + Ion-Implanted Si (100),” Appl. Phys. Lett, 55(18), 1838–1840 (1989).CrossRefGoogle Scholar
  86. [86]
    V. Raineri, R. J. Schreutelkamp, F. W. Saris, K. T. F. Janssen, and R. A. Kaim, “Reduction of Boron Diffusion in Silicon by 1 MeV 29Si + Irradiation,” Appl. Phys. Lett, 58(9), 922–924 (1991).CrossRefGoogle Scholar
  87. [87]
    P. B. Griffin, P. M. Fahey, J. D. Plummer, and R. W. Dutton, “Measurement of Silicon Interstitial Diffusivity,” Appl. Phys. Lett, 47(3), 319–321 (1985).CrossRefGoogle Scholar
  88. [88]
    P. B. Griffin, S. T. Ann, W. A. Tiller, and J. D. Plummer, “Model for Bulk Effects on Si Interstitial Diffusivity in Silicon,” Appl. Phys. Lett, 51(2), 115–117 (1987).CrossRefGoogle Scholar
  89. [89]
    R. J. Schreutelkamp, J. S. Custer, J. R. Liefting, W. X. Lu, and F. W. Saris, “Pre-Amorphization Damage in Ion-Implanted Silicon,” Mater. Sci. Rep., 6(7/8), 275–366 (1991)CrossRefGoogle Scholar
  90. [90]
    K. S. Jones, S. Prussin, and E. R. Weber, “A Systematic Analysis of Defects in Ion-Implanted Silicon,” Appl. Phys. A, 45, 1–34 (1988).CrossRefGoogle Scholar
  91. [92]
    T. E. Seidel and A. U. MacRae, “The Isothermal Annealing of Boron Implanted Silicon,” in First International Conference on Ion Implantation, F. Eisen and L. Chadderton, Eds., Gordon and Beach, New York (1971).Google Scholar
  92. [93]
    L. Csepregi, E. F. Kennedy, J. W. Mayer, and T. W., Sigmon, “Substrate-Orientation Dependence of the Epitaxial Regrowth Rate from Si-Implanted Amorphous Si,” J. Appl. Phys.,49(7), 3906–3911 (1978).CrossRefGoogle Scholar
  93. [94]
    L. Csepregi, E. F. Kennedy, T. J. Gallangher, J. W. Mayer, and T. W. Sigmon, “Reorder of Amorphous Layers of Si Implanted with P, As, and Ions,” J. Appl. Phys., 48(10), 4234–4240 (1977).CrossRefGoogle Scholar
  94. [95]
    D. Hagmann, D. Steiner, and T. Schellinger, “A Method to Impede the Formation of Crystal Defects after High Dose Arsenic Implants,” J. Electrochem. Soc. 133(12), 2597–2600 (1986).CrossRefGoogle Scholar
  95. [96]
    T. O. Sedgewick, “Short Term Annealing,” J. Electrochem. Soc. 130, 484 (1983).CrossRefGoogle Scholar
  96. [97]
    R. Kwor, D. L. Kwong, C. C. Ho, B. Y. Tsaur, and S. Baumann, “Effect of Furnace Pre-Anneal and Rapid Thermal Anneal on Arsenic-Implanted Silicon,” J. Electrochem. Soc. 132(5), 1201–1206 (1985).CrossRefGoogle Scholar
  97. [98]
    S. K. Tiku and W. M. Duncan, “Self-Compensation in Rapid Thermal Annealed Silicon-Implanted Gallium Arsenide,” J. Electrochem. Soc. 132, 2237 (1985).CrossRefGoogle Scholar
  98. [99]
    M. D. Giles, “Ion Implantation,” in VLSI Technology, S. M. Sze, Ed., p. 327, John Wiley, New York (1983).Google Scholar
  99. [100]
    W. Hofker, D. P. Oosthoek, N. J. Koenman, and H. A. M. De Grefte, “Concentration Profiles of Boron Implantations in Amorphous and Polycrystalline Silicon,” Rad. Effects, 24, 223 (1975).CrossRefGoogle Scholar
  100. [101]
    W. K. Hofker, H. W. Werner, D. P. Oosthoek, and N. J. Koenman, “Boron Implantation in Silicon: A Comparison of Charge Carriers and Boron Concentration Profiles,” Appl. Phys.,4, 125 (1974).CrossRefGoogle Scholar
  101. [102]
    R. F. Webber, R. S. Thorn, L. N. Large, “The Measurement of Electrical Activity and Hall Mobility of Boron and Phosphorus Ion-Implanted Layers in Silicon,” Int J. Electronics, 26(2), 163–172 (1969).CrossRefGoogle Scholar
  102. [103]
    H. J. Geipel and W. K. Tice, “Critical Microstructure for Ion-Implantation Gettering Effects in Silicon,” Appl. Phys. Lett, 30(7), 325–327 (1977).CrossRefGoogle Scholar
  103. [104]
    B. El-Kareh, “Ultra-Shallow Doped Film Requirements for Future Technologies,” J. Vac. Sci. TechnoL, Jan./Feb. 1994.Google Scholar
  104. [105]
    M. Tamura, T. Ikeda, and T. Takuyama, “Crystal Defects and Electrical Properties of Implanted Silicon,” in Second International Conference on Ion Implantation, I. Ruge and J. Graul, Eds., Plenum Press, New York (1972).Google Scholar
  105. [106]
    C. Hill, “Beam Processing in Silicon Device Technology,” in Laser and Electron Beam Interaction and Material Processing, J. F. Gibbons, L. D. Hess, and T. W. Sigmon, Eds., North-Holland, New York (1981).Google Scholar
  106. [107]
    J. Y. Sun, Wong, Y. Taur, and H. Hsu, “Study of Boron Penetration Through Thin Oxide with O + Polygate,” VLSI Tech. Digest., p. 17 (1989).Google Scholar
  107. [108]
    B. El-Kareh, W. W. Abadeer, and W. Tonti, “Design of Submicron PMOSFETs for DRAM Array Applications,” IEDM Tech. Digest, p. 379 (1991).Google Scholar
  108. [109]
    C. M. Osburn, “Silicides,” Rapid Thermal Processing, Science and Technology, R. B. Fair, Ed., Chap. 6, Academic Press, San Diego, (1993). See also references at end of chapter.Google Scholar
  109. [110]
    L. Van den Hove and R. F. DeKeersmaecker, “Silicide by Rapid Thermal Processing,” Reduced Thermal Processing for VLSI, R. A. Levy, Ed., Plenum Press, New York (1989).Google Scholar
  110. [111]
    H. Jiang, C. M. Osburn, P. Smith, Z.-G. Xiao, D. Griffis, G. McGuire, and G. A. Rozgonyi, “Ultra Shallow Junction Formation Using Diffusion from,” J. Electrochem. Soc., 139(10, 196 (1992).CrossRefGoogle Scholar
  111. [112]
    M. H. Juang and H. Cheng, “Effect of Rapid Thermal Annealing on the Formation of Shallow O +-NJunctionbyImplanting:f.BF 2 Ions into Thin Metal Films on Si Substrate,” J. Appl. Phys., 71(3), 1271 (1992).CrossRefGoogle Scholar
  112. [113]
    J. Suarez, B. E. Johnson, and B. El-Kareh, “Thermal Stability of Polysilicon Resistors,” IEEE Trans. mManuf. Tech., 15(3), 392 (1992).Google Scholar
  113. [114]
    S. A. StOnge, S. G. Franz, A. F. Puttlitz, A. Kalinoski, B. E. Johnson, and B. El-Kareh, “Design of Precision Capacitors for Analog Applications,” IEEE Trans. mManuf. Tech., 15(6), 1064 (1992).Google Scholar
  114. [115]
    J. S. Mercier, “Rapid Flow of Doped Glasses for VLSI Fabrication,” Solid-State Technology, 30(7), 85 (1987).MathSciNetGoogle Scholar
  115. [116]
    B. El-Kareh, “Comparison of RTP and Furnace Processing for Quarter-Micron CMOS,” SPIE Proceedings, Vol. 2091 (1994).Google Scholar
  116. [117]
    L. J. Parkes and J. P. Lavine, “Calculated Moments for the Implantation of Boron into,” J. Appl. Phys., 60, 14 (1986).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Badih El-Kareh
    • 1
  1. 1.IBM CorporationUSA

Personalised recommendations