Skip to main content

Design of modified atmosphere packaging for fresh produce

  • Chapter
Active Food Packaging

Abstract

Controlled atmosphere (CA) storage and modified atmosphere packaging (MAP) are two useful technologies to extend the shelf-life of fresh agricultural and horticultural produce. Simply stated, these technologies involve storing a fruit or vegetable in a modified atmosphere usually consisting of reduced O2 and elevated CO2 concentrations compared to air. The modified atmosphere reduces the rates of respiration and ethylene production, which are often associated with the benefits of retardation of physiological, pathological, and physical deteriorative processes occurring in the product. Aerobic respiration is a complicated process that involves a series of enzymatic reactions taking place through the metabolic pathways of glycolysis, the tricarboxylic acid (TCA) cycle, and the associated electron transport system (Kader, 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, H.S. (1989) Controlled atmosphere package. US Patent 4842875.

    Google Scholar 

  • Cameron, A.C., Boylan-Pett, W. and Lee, J. (1989) Design of modified atmosphere packaging systems: modeling oxygen concentrations within sealed packages of tomato fruits. J. Food Sci., 54, 1413–16.

    Article  Google Scholar 

  • Cameron, A.C., Boylan-Pett, W. and Lee, J. (1989) Design of modified atmosphere packaging systems: modeling oxygen concentrations within sealed packages of tomato fruits. J. Food Sci., 54, 1421.

    Article  Google Scholar 

  • Deily, K.R. and Rizvi, S.S.H. (1981) Optimization of parameters for packaging of fresh peaches in polymeric films. J. Food Processing, 5(1), 23–41.

    Article  Google Scholar 

  • Emond, J.P., Castaigne, F., Toupin, C.J. and Desilets, D. (1991) No Article Title Mathematical Modeling of Gas Exchange in Modified Atmosphere Packaging. Transactions of the ASAE, 34(1), 239–45.

    Google Scholar 

  • Exama, A., Arul, J., Lencki, R.W., Lee, L.Z. and Toupin, C. (1993) Suitability of plastic films for modified atmosphere packaging of fruits and vegetables. J. Food Sci., 58(6), 1365–70.

    Article  CAS  Google Scholar 

  • Haggar, P.E., Lee, D.S. and Yam, K.L. (1992) Application of an enzyme kinetics based respiration model to closed system experiments for fresh produce. J. Food Process Engineering, 15, 143–57.

    Article  Google Scholar 

  • Hayakawa, K., Henig, Y.S. and Gilbert, S.G. (1975) Formulae for predicting gas exchange of fresh produce in polymeric film package. J. Food Sci., 40, 186–91.

    Article  CAS  Google Scholar 

  • Isaka, T. (1988) Recent trends in use of far IR radiations: use on packaging films. Food Ind. (Shokuhin Kogyo, Jpn.), 31(24), 27.

    Google Scholar 

  • Jurin, V. and Karel, M. (1963) Studies on control of respiration of McIntosh apples by packaging method. Food Technol. 17, 104–8.

    CAS  Google Scholar 

  • Joyce, D.C. (1988) Evaluation of a ceramic-impregnated Plastic Film as a Postharvest Wrap. HortScience, 23, 1088.

    Google Scholar 

  • Kader, A.A. (1987) Respiration of gas exchange in vegetables. In: Post Harvest Physiology of Vegetables, J. Weichmann (ed.), Marcel Dekker, New York, Chapter 3.

    Google Scholar 

  • Kader, A.A., Zagory, D. and Kerbel, E.L. (1989) Modified atmosphere packaging of fruits and vegetables. CRC Crit. Rev. Food Sci. Nut., 28(1), 1.

    Article  CAS  Google Scholar 

  • Katzyoshi, T. (1992) Freshness keeping packaging. In: Handbook of Food Preservation. K. Umeda, K. Yasmoto, K. Utagawa, T. Yokoyama and T. Yamaguchi (eds), Creative, Tokyo, 365–74.

    Google Scholar 

  • Labuza, T.P. and Breene, W.M. (1989) Application of ‘active packaging’ for improvement of shelf-life and nutritional quality of fresh and extended shelf-life foods. J. Food Proc. and Pres., 13, 1–69.

    Article  CAS  Google Scholar 

  • Lebermann, K.W., Nelson, A.I. and Steinberg, M.P. (1968) Post-harvest changes of broccoli stored in modified atmosphere: I. Respiration of shoots and color of flower head. Food Technol., 22(4), 143–6.

    CAS  Google Scholar 

  • Lee, D.S., Haggar, P.E. and Yam, K.L. (1992) Application of ceramic-filled polymeric films for packaging fresh produce. Packaging Technology and Science, 5, 27–30.

    Article  CAS  Google Scholar 

  • Lee, D.S., Haggar, P.E., Lee, J. and Yam, K.L. (1991) Model for fresh produce respiration in modified atmosphere based on principles of enzyme kinetics. J. Food Sci., 56(6), 1580.

    Article  CAS  Google Scholar 

  • Lee, J. (1987) The design of controlled or modified packaging systems for fresh produce. In: Food Product-Package Compatibility, Proceedings, J.I. Gray, B.R. Harte and J. Miltz (eds), Technomic Publishing, Lancaster, PA, USA.

    Google Scholar 

  • Mannapperuma, J.D. and Singh, R.P. (1990) Micromodel optimization of modified atmosphere vegetable/fruit packaging. In: Proceedings of the Fifth International Conference on Controlled/Modified Atmosphere/Vacuum Packaging-CAP90, San Jose, Calif., January 17–19.

    Google Scholar 

  • Mannapperuma, J.D. and Singh, R.P. (1994) Design of Perforated Polymeric Packages for the Modified Atmosphere Storage of Fresh Fruits and Vegetables. 1991 IFT Annual Meeting, Paper 21–8.

    Google Scholar 

  • Mizutani, Y. et al. (1993) Microporous polypropylene sheets. Ind. Eng. Chem. Res., 32, 221–7.

    Article  CAS  Google Scholar 

  • Meyers, R.A. (1985) Modified Atmosphere Package and Process. US Patent 4515266.

    Google Scholar 

  • Ohta, H., Nakatani, A., Saio, T., Nagota, Y., Yoza, K. and Ishitani, T. (1991) No Article Title Gas Permeability of Commercial Plastic Films. Report of Ginki Chogoku National Agricultural Experimentation Station, 82, 43–6.

    CAS  Google Scholar 

  • Powrie, W.D. and Skura, B.J. (1991) Modified atmosphere packaging of fruits and vegetables. In: Modified Atmosphere Packaging of Food, B. Ooraikul and M.E. Stiles (eds), Ellis Horwood, New York.

    Google Scholar 

  • Prince, T.A. (1989) Modified atmosphere packaging of horticultural commodities. In: Controlled/Modified Atmosphere/Vacuum Packaging of Foods, A.L. Brody (ed.), Food & Nutrition Press, Trumbull, Connecticut, 67–100.

    Google Scholar 

  • Robertson, G.L. (1992) Packaging of horticultural products. In: Food Packaging: Principles and Practice, Marcel Dekker, New York, 470–506.

    Google Scholar 

  • Shelekhin, A.B., Dixon, A.G. and Ma, Y.H. (1992) Adsorption, permeation, and diffusion of gases in microporous membranes. II. Permeation of gases in microporous glass membranes. J. Membrane Sci., 75, 233–44.

    Article  CAS  Google Scholar 

  • Singh, R.P. and Oliveira, F. (1994) Minimal Processing of Foods and Process Optimization. CRC Press, Boca Raton, Florida, 438–9.

    Google Scholar 

  • Solomos, T. (1994) Some biological and physical principles underlying modified atmosphere packaging. In: Minimally Processed Refrigerated Fruits and Vegetables, R.C. Wiley (ed.), Chapman & Hall, New York, 183–225.

    Chapter  Google Scholar 

  • Song, Y.S., Kim, H.K. and Yam, K.L. (1992) Respiration of blueberry in modified atmosphere at various temperatures. J. Amer. Soc. Hort. Sci., 117(6), 925–9.

    Google Scholar 

  • Veeraju, M. and Karel, M. (1966) Controlling atmosphere in fresh-fruit package. Modern Packaging, 40, 168.

    CAS  Google Scholar 

  • Veeraju, M. and Karel, M. (1966) Controlling atmosphere in fresh-fruit package. Modern Packaging, 40, 170.

    Google Scholar 

  • Veeraju, M. and Karel, M. (1966) Controlling atmosphere in fresh-fruit package. Modern Packaging, 40, 172

    Google Scholar 

  • Veeraju, M. and Karel, M. (1966) Controlling atmosphere in fresh-fruit package. Modern Packaging, 40, 174

    Google Scholar 

  • Veeraju, M. and Karel, M. (1966) Controlling atmosphere in fresh-fruit package. Modern Packaging, 40, 254.

    Google Scholar 

  • Weichmann, J. (1986) The effect of controlled-atmosphere storage on the sensory and nutritional quality of fruits and vegetables. Hort. Rev., 8, 101–27.

    Google Scholar 

  • Yam, K.L., Haggar, P.E. and Lee, D.S. (1993) Modeling respiration of low CO2 tolerance produce using a closed system experiment. Foods Biotechnol., 2(1), 22–5.

    Google Scholar 

  • Yang, C.C. and Chinnan, M.S. (1988) Modeling the effect of O2 and CO2 on respiration and quality of stored tomatoes. Trans. ASAE, 31, 920–5.

    Google Scholar 

  • Zagory, D. and Kader, A.A. (1988) Modified atmosphere packaging of fresh produce. Food Technology, 42(9), 70–7.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yam, K.L., Lee, D.S. (1995). Design of modified atmosphere packaging for fresh produce. In: Rooney, M.L. (eds) Active Food Packaging. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2175-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2175-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5910-4

  • Online ISBN: 978-1-4615-2175-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics