Skip to main content

Measurement of Food Structure and Component Functionality

  • Chapter
  • 83 Accesses

Abstract

Magnetic resonance imaging is capable of measuring structural features as well as the influence of processing, storage, and variations in formulation on the development of structural features. Strategies for measuring food structure using MRI and procedures for analyzing this information are presented here. MRI has the ability to measure certain structural features that cannot be measured by other experimental techniques, for example, the gas phase volume fraction as a function of position within a foam during formation of the foam (Philhofer 1992).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, J. R., Tetlow, N., Graham, A. L., Altobelli, S. A., & Fukushima, E. 1991. Experimental observation of particle migration in concentrated suspensions: Couette flow. J. of Rheology 35: 773–797.

    Article  CAS  Google Scholar 

  • Assink, R. A., Caprihan, A., & Fukushima, E. 1989. Density profiles of a draining foam by nuclear magnetic resonance imaging. AIChE J. 34: 2077–2081.

    Article  Google Scholar 

  • Callaghan, P. T. 1984. Pulsed field gradient nuclear magnetic resonance as a probe of liquid state molecular organization. Australian J. Physics. 37: 359–387.

    CAS  Google Scholar 

  • Callaghan, P. T., Jolley, K. W., & Humphrey, R. S. 1983. Diffusion of fat and water in cheese as studied by pulsed field gradient nuclear magnetic resonance. J. Colloid and Interface Science 93: 521–529.

    Article  CAS  Google Scholar 

  • Callaghan, P. T., MacGowan, D., Packer, K. J., & Zelaya, F. O. 1990. High-resolution q-space imaging in porous structures. J. Mag. Reson. 90: 177–182.

    Google Scholar 

  • Carr, H. Y. & Purcell, E. M. 1954. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Physical Review 94: 630–638.

    Article  CAS  Google Scholar 

  • Cheng, W. C., Luthra, N. P., & Pereira, C. J. 1990. Study of restricted diffusion in porous catalysts by NMR. AIChE J. 36: 559–568.

    Article  CAS  Google Scholar 

  • Cory, D. G., & Garroway, A. N. 1990. Measurement of translational displacement probabilities by NMR: An indicator of comparmentation. Mag. Reson. in Med. 14: 435–444.

    Article  CAS  Google Scholar 

  • Hahn, E. L. 1950. Spin echoes. Physical Review 80: 580–594.

    Article  Google Scholar 

  • Heil J. R., Özilgen, M., & McCarthy, M. J. 1993. Magnetic resonance imaging analysis of water migration and void formation in baking biscuits. AIChE Symposium Series, edited by G. Barbosa-Canosava and M. Okos, 297: 39–45.

    Google Scholar 

  • Kärger, J., Pfeifer, H., & Heink, W. 1988. Principles and applications of self-diffusion measurements by nuclear magnetic resonance. In Advances in Magnetic Resonance, edited by J. S. Waugh. New York: Academic Press.

    Google Scholar 

  • Kauten, R. J., Maneval, J. E., & McCarthy, M. J. 1991. Fast determination of spatially localized volume fractions in emulsions. J. of Food Science 56: 799–801, 847.

    Article  CAS  Google Scholar 

  • Klammler, F., & Kimmich, R. 1990. Volume-selective and spectroscopically resolved NMR investigation of diffusion and relaxation in fertilized hen eggs. Physics in Medicine and Biology 35: 67–79.

    Article  CAS  Google Scholar 

  • Kose, K., 1990. NMR imaging of turbulent structure in a transitional pipe flow. J. Phys. D: Appl. Phys. 23: 981–983.

    Article  CAS  Google Scholar 

  • Majors, P. D., Ackley, J. L., Altobelli, S. A., Caprihan, A., & Fukushima, E. 1990. Eddy current compensation by direct field detection and digital gradient modification. J. Magn. Reson. 87: 548–553.

    Google Scholar 

  • Maneval, J. E., McCarthy, M. J., & Whitaker, S. 1990. Use of nuclear magnetic resonance as an experimental probe in multiphase systems: Determination of the instrument weight function for measurements of liquid-phase volume fractions. Water Resources Research 26: 2807–2816.

    Google Scholar 

  • McCarthy, K. L., Kauten, R. J., & Agemura, C. K. 1992. Application of NMR imaging to the study of velocity profiles during extrusion processing. Trends Fd Sci. and Tech. 3: 215–219.

    Article  CAS  Google Scholar 

  • McCarthy, K. L., Kauten, R. J., McCarthy, M. J., & Steffe, J. F. 1991. Flow profiles in a tube rheometer using magnetic resonance imaging. J. of Food Engineering 16: 117.

    Google Scholar 

  • McCarthy, M. J. 1990. Interpretation of the magnetic resonance imaging signal from a foam. AIChE J 36: 287–290.

    Article  CAS  Google Scholar 

  • McCarthy, M. J., Maneval, J., & Powell, R. L. 1992. Structure/property measurements using magnetic resonance spectroscopy and imaging. In Advances in Food Engineering, edited by R. P. Singh and A. Wirakartakamasuma. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Packer, K. J., & Rees, C. 1972. Pulsed NMR studies of restricted diffusion. I. Droplet size distributions in emulsions. J. Colloidal and Interface Science. 40: 206–218.

    Article  CAS  Google Scholar 

  • Packer, K. J., & Zelaya, F. O. 1989. Observation of diffusion of fluids in porous solids by pulsed field gradient NMR. Colloids and Surfaces 36: 221–227.

    Article  CAS  Google Scholar 

  • Philhofer, G. Master Thesis, University of California, Davis 1992.

    Google Scholar 

  • Powell, R. L., Seymour, J., McCarthy, M. J., & McCarthy, K. 1992. Magnetic resonance imaging as a tool for rheological investigation. In Theoretical and Applied Rheology: Proceedings of the XIth International Congress on Rheology, edited by Paula Moldenaers and Roland Keunings, 946–948. Amsterdam: Elsevier Science Publishers.

    Google Scholar 

  • Sinton, S. W., & Chow, A. W. 1991. NMR flow imaging of fluids and solid suspensions in poiseuille flow, J. Rheology 35: 735–772.

    Article  CAS  Google Scholar 

  • Stejskal, E. O. 1965. Use of spin echoes in a pulsed magnetic-field gradient to study anisotropic, restricted diffusion and flow. J. of Chemical Physics. 42: 288–292.

    Article  CAS  Google Scholar 

  • Stejskal, E. O., & Tanner, J. E. 1965. Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient. J. Chemical Physics. 43: 3597–3603.

    Article  Google Scholar 

  • Stilbs, P. 1987. Fourier transform pulsed-field gradient spin echo studies of molecular diffusion. Progress in NMR Spectroscopy 19: 1–45.

    Article  CAS  Google Scholar 

  • Tanner, J. E., & Stejskal, E. O. 1968. Restricted self-diffusion of protons in colloidal systems by the pulsed-gradient spin-echo method. J. of Chemical Physics 49: 1768–1777.

    Article  CAS  Google Scholar 

  • Taylor, D. G., & Bushell, M. C. 1985. The spatial mapping of translational diffusion coefficients by the NMR imaging technique. Physics in Medicine and Biology 30: 345–349.

    Article  CAS  Google Scholar 

  • Tumey, M. 1990. Masters Thesis Department of Chemical Engineering, University of California, Davis.

    Google Scholar 

  • Xia, Y., & Callaghan, P. T. 1990. The measurement of diffusion and flow of polymer solutions using dynamic NMR microscopy. Makromolecular Chemie Macromolecular Symposium 34: 277–286.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

McCarthy, M.J. (1994). Measurement of Food Structure and Component Functionality. In: Magnetic Resonance Imaging In Foods. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2075-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2075-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5862-6

  • Online ISBN: 978-1-4615-2075-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics