Skip to main content

Stable isotope ratio measurement using a laser microprobe

  • Chapter
Microprobe Techniques in the Earth Sciences

Part of the book series: The Mineralogical Society Series ((MIBS,volume 6))

Abstract

Many elements have two or more stable isotopes and can, therefore, be usefully studied for variations in their isotope ratios. These isotopes, unlike those of the radioactive variety, are completely stable and do not disintegrate with time. As such, when a non-volatile material such as a mineral is formed, the constituent elements should theoretically retain their isotopic integrity forever; subsequent measurement of these isotope ratios may assist with an effective reconstruction of the formation conditions. In reality, the isotopic compositions of a particular mineral may become modified as a result of an external influence, such as a heating process during hydrothermal activity. In this case, stable isotope measurements may be able to document something of the secondary activity which has befallen the sample of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrain, R.S. and Watson, J. (1984) Laser microspectral analysis: a review of principles and applications. J. Phys. D: Appl. Phys., 17, 1915–40.

    Article  Google Scholar 

  • Alt, J.C., Anderson, T.F. and Bonneil, L. (1989) The geochemistry of sulfur in a 1.3km section of hydrothermally altered oceanic crust, DSDP Hole 504B. Geochim. Cosmochim. Acta, 53, 1011–23.

    Article  Google Scholar 

  • Bennett, J.N. and Grant, J.N. (1980) Analysis of fluid inclusions using a pulsed laser microprobe. Mineral. Mag., 43, 945–7.

    Article  Google Scholar 

  • Boyd, S.R., Mattey, D.P., Pillinger, C.T. et al. (1987) Multiple growth events during diamond genesis: an integrated study of carbon and nitrogen isotopes and nitrogen aggregation state in coated stones. Earth Planet. Sci. Lett., 86, 341–53.

    Article  Google Scholar 

  • Boyd, S.R., Wright, I.P., Franchi, I.A. and Pillinger, C.T. (1988) Preparation of sub-nanomole quantities of nitrogen gas for stable isotopic analysis. J. Phys. E: Sci. Instr., 21, 876–85.

    Article  Google Scholar 

  • Clayton. R.N. and Epstein, S. (1958) The relationship between O18/O16 ratios in coexisting quartz, carbonate, and iron oxides from various geological deposits. J. Geol., 66, 352–73.

    Article  Google Scholar 

  • Conzemius, R.J. and Capellen, J.M. (1980) A review of the applications to solids of the laser ion source in mass spectrometry. Int. J. Mass Spectrom. Ion Phys., 34, 197–271.

    Article  Google Scholar 

  • Conzemius, R.J., Simons, D.S., Shankai, Z. and Byrd, G.D. (1983) Laser mass spectrometry of solids: a bibliography 1963-1982. Microbeam Analysis-1983 (ed. R. Gooley), pp. 301–32.

    Google Scholar 

  • Crowe, D.E. and Valley, J.W. (1992) Laser microprobe study of sulfur isotope variation in a sea-floor hydrothermal spire, Axial Seamount, Juan de Fuca Ridge, eastern Pacific. Chem. Geol. (Isotope Geosci.), 101, 63–70.

    Article  Google Scholar 

  • Crowe. D.E., Valley, J.W. and Baker, K.L. (1990) Microanalysis of sulfur-isotope ratios and zonation by laser microprobe. Geochim. Cosmochim. Acta, 54, 2075–92.

    Article  Google Scholar 

  • Deloule, E. and Éloy, J.F. (1982) Improvements of laser probe mass spectrometry for the chemical analysis of fluid inclusions in ores. Chem. Geol., 37, 191–202.

    Article  Google Scholar 

  • Dickson, J.A.D., Smalley, P.C. and Kirkland, B.L. (1991) Carbon and oxygen isotopes in Pennsylvanian biogenic and abiogenic aragonite (Otero County, New Mexico): a laser microprobe study. Geochim. Cosmochim. Acta, 55, 2607–13.

    Article  Google Scholar 

  • Eldridge, C.S., Compston, W., Williams, I.S. and Walshe, J.L. (1989) Sulfur isotopic analyses on the SHRIMP ion microprobe, in New Frontiers in Stable Isotopic Research: Laser Probes, Ion Probes, and Small-sample Analysis (eds W.C. Shanks and R.E. Criss), US Geol. Surv. Bull., 1890, 163–74.

    Google Scholar 

  • Elsenheimer, D. and Valley, J.W. (1992) In situ oxygen isotope analysis of feldspar and quartz by Nd: YAG laser microprobe. Chem. Geol. (Isotope Geosci.), 101, 21–42.

    Article  Google Scholar 

  • Erëmin. N.I. (1975) Quantitative analysis by means of the laser microanalyser LMA-1. Mineral. Mag., 40, 312–14.

    Article  Google Scholar 

  • Fallick. A.E. (1990) High precision sulfur isotope ratio measurements by laser probe mass spectrometry. Bull. Soc. fr. Mineral. Cristallog., 2/3, 131.

    Google Scholar 

  • Fallick. A.E., McConville. P., Boyce, A.J. et al. (1992) Laser microprobe stable isotope measurements on geological materials: some experimental considerations (with special reference to δ34S in sulphides). Chem. Geol. (Isotope Geosci.), 101, 53–61.

    Article  Google Scholar 

  • Faure. G. (1986) Principles of Isotope Geology. John Wiley. New York. 589 pp.

    Google Scholar 

  • Franchi. I.A., Akagi. T. and Pillinger, C.T. (1992) Laser fluorination of meteorites — small sample analysis of δ17O and δ18O(abstract). Meteoritics, 27, 222.

    Google Scholar 

  • Franchi. I.A., Boyd. S.R., Wright, I.P. and Pillinger, C.T. (1989) Application of lasers in small-sample stable isotopic analysis, in New Frontiers in Stable Isotopic Research: Laser Probes, Ion Probes, and Small-sample Analysis (eds W.C. Shanks and R.E. Criss). US Geol. Surv. Bull., 1890, 51–9.

    Google Scholar 

  • Franchi, I.A., Gibson. E.K., Wright, I.P. and Pillinger, C.T. (1985) Nitrogen isotopes by laser probe extraction (abstract). Lunar Planet. Sci., XVI, 248–9, Lunar and Planetary Institute, Houston.

    Google Scholar 

  • Franchi, I.A., Wright, I.P., Gibson, E.K. and Pillinger, C.T. (1986) The laser microprobe: a technique for extracting carbon, nitrogen, and oxygen from solid samples for isotopic measurements. J. Geophys. Res., 91, D514–24.

    Article  Google Scholar 

  • Franchi. I.A., Wright, I.P. and Pillinger, C.T. (1986) Heavy nitrogen in Bencubbin — a lightelement isotopic anomaly in a stony-iron meteorite. Nature, 323, 138–40.

    Article  Google Scholar 

  • Gardiner, L.R. and Pillinger. C.T. (1979) Static mass spectrometry for the determination of active gases. Anal. Chem., 51, 1230–1236.

    Article  Google Scholar 

  • Giletti. B.J. and Shimizu, N. (1989) Use of the ion microprobe to measure natural abundances of oxygen isotopes in minerals, in New frontiers in stable isotopic research: laser probes, ion probes, and small-sample analysis (eds W.C. Shanks and R.E. Criss), US Geol. Surv. Bull., 1890, 129–36.

    Google Scholar 

  • Harte. B. and Otter, M. (1992) Carbon isotope measurements on diamonds. Chem. Geol. (Isotope Geosci.), 101, 177–83.

    Article  Google Scholar 

  • Hervig. R.L., Thomas. R.M. and Williams, P. (1989) Charge neutralization and oxygen isotopic analysis of insulators with the ion microprobe, in New frontiers in stable isotopic research: laser probes, ion probes, and small-sample analysis (eds W.C. Shanks and R.E. Criss). US Geol. Surv. Bull., 1890, 137–43.

    Google Scholar 

  • Hillenkamp, F., Unsöld, E., Kaufmann, R. and Nitsche, R. (1975) Laser microprobe mass analysis of organic materials. Nature, 256, 119–20.

    Article  Google Scholar 

  • Hoefs, J. (1987) Stable Isotope Geochemistry. Springer-Verlag, Berlin, 241 pp.

    Google Scholar 

  • Honig, R.E. and Woolston, J.R. (1963) Laser-induced emission of electrons, ions, and neutral atoms from solid surfaces. Appl. Phys. Lett., 2, 138–9.

    Article  Google Scholar 

  • Jones, L.M., Taylor, A.R., Winter, D.L. et al. (1986) The use of the laser microprobe for sample preparation in stable isotope mass spectrometry (abstract). Terra Cognita, 6, 263.

    Google Scholar 

  • Kelley, S.P. and Fallick, A.E. (1990) High precision spatially resolved analysis of δ34S in sulphides using a laser extraction technique. Geochim. Cosmochim. Acta, 54, 883–8.

    Article  Google Scholar 

  • Kelley, S.P., Fallick, A.E., McConville. P. and Boyce, A.J. (1992) High precision, high spatial resolution analysis of sulfur isotopes by laser combustion of natural sulfide minerals. Scann. Microsc., 6, 129–38.

    Google Scholar 

  • Kovalev, I.D., Maksimov, G.A., Suchkov, A.I. and Larin, N.V. (1978) Analytical capabilities of laser-probe mass spectrometry. Int. J. Mass Spectrom. Ion Phys., 27, 101–37.

    Article  Google Scholar 

  • Krantz, D.E., Williams, D.F. and Jones, D.S. (1987) Ecological and palaeoenvironmental information using stable isotope profiles from living and fossil molluscs. Palaeogeogr. Palaeoclimat. Palaeoecol., 58, 249–66.

    Article  Google Scholar 

  • Kyser, T.K. (ed.) (1987) Short Course in Stable Isotope Geochemistry of Low Temperature Fluids. Mineralogical Association of Canada, Short Course Handbook. 13, 452 pp.

    Google Scholar 

  • Lincoln, K.A. (1965) Flash-vaporisation of solid materials for mass spectrometry by intense thermal radiation. Anal. Chem., 37, 541–3.

    Article  Google Scholar 

  • McKinney, C.R., McCrea, J.M., Epstein, S. et al. (1950) Improvements in mass spectrometers for the measurement of small differences in isotope abundance ratios. Rev. Sci. Instr., 21, 724–30.

    Article  Google Scholar 

  • Macpherson, C., Mattey, D.P. and Harris, J. (1992) Oxygen isotope analysis of microgram quantities of silicate by a laser-fluorination technique: data for syngenetic inclusions in diamond (abstract). V.M. Goldschmidt Conference, May 8–10, 1992, Reston, Virginia, A-67.

    Google Scholar 

  • Mattey. D.P. and Macpherson. C. (1993) High-precision oxygen isotope microanalysis of ferromagnesian minerals by laser-fluorination. Chem. Geol. (Isotope Geosci.), 105, 305–18.

    Google Scholar 

  • Mattey. D.P., Macpherson, C.G. and Harris, J. (1992) Oxygen isotope analysis of syngenetic silicate inclusions in diamond by laser microprobe (abstract). EOS, Trans. Am. Geophys. Union. 73, 336.

    Google Scholar 

  • Megrue. G.H. (1967) Isotopic analysis of rare gases with a laser microprobe. Science, 157, 1555–6.

    Article  Google Scholar 

  • Megrue. G.H. (1971) Distribution and origin of helium, neon, and argon isotopes in Apollo 12 samples by in situ analysis with a laser probe mass spectrometer. J. Geophys. Res., 76, 4956–68.

    Article  Google Scholar 

  • Nier. A.O. (1947) A mass spectrometer for isotope and gas analysis. Rev. Sci. Instr., 18, 398–411.

    Article  Google Scholar 

  • Norris. S.J., Brown, P.W. and Pillinger, C.T. (1981) Laser pyrolysis for light element and stable isotope studies (abstract). Meteoritics, 16, 369.

    Google Scholar 

  • Pillinger. C.T. (1992) New technologies for small sample stable isotope measurement: static vacuum gas source mass spectrometry, laser probes, ion probes and gas chromatographyisotope ratio mass spectrometry. Int. J. Mass Spectrom. Ion Proc., 118/119, 477–501.

    Article  Google Scholar 

  • Powell. M.D. and Kyser. T.K. (1991) Analysis of δl3C and δ18O in calcite. dolomite, rhodocrosite and siderite using a laser extraction system. Chem. Geol. (Isotope Geosci.). 94, 55–66.

    Article  Google Scholar 

  • Rees. C.E. (1978) Sulphur isotope measurements using SO2 and SF6. Geochim. Cosmochim. Acta, 42, 383–9

    Article  Google Scholar 

  • Roedder, E. (1984) Fluid Inclusions. Mineralogical Society of America, Reviews in Mineralogy, 12, 644 pp.

    Google Scholar 

  • Rumble D. Palin J.M. and Hoering T.C. (1991) Laser fluorination of sulfide minerals with F2 gas. Annual Report to the Director of the Geophysical Laboratory Carnegie Institution Washington 1990–1991 pp. 30–4

    Google Scholar 

  • Schiffries, C.M. and Rumble, D. (1990) Oxygen isotopic zoning in quartz determined by laser microprobe-isotope ratio mass spectrometry. Annual Report to the Director of the Geophysical Laboratory, Carnegie Institution, Washington, 1989-1990, pp. 37–40.

    Google Scholar 

  • Scott, R.H., Jackson, P.F.S. and Strasheim, A. (1971) Application of laser source mass spectroscopy to analysis of geological material. Nature, 232, 623–4.

    Article  Google Scholar 

  • Shankai, Z., Conzemius, R.J. and Svec, H.J. (1984) Determination of carbon, nitrogen, and oxygen in solids by laser mass spectrometry. Anal. Chem., 56, 382–5.

    Article  Google Scholar 

  • Sharp, Z.D. (1990) A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides. Geochim. Cosmochim. Acta, 54, 1353–7.

    Article  Google Scholar 

  • Sharp, Z.D. (1991) Determination of oxygen diffusion rates in magnetite from natural isotopic variations. Geology, 19, 653–6.

    Article  Google Scholar 

  • Sharp, Z.D. (1992) In situ laser microprobe techniques for stable isotope analysis. Chem. Geol. (Isotope Geosci.), 101, 3–19.

    Article  Google Scholar 

  • Sharp, Z.D. and O’Neil, J.R. (1989) A laser-based carbon reduction technique for oxygen isotope analysis of silicates and oxides. Annual Report to the Director of the Geophysical Laboratory, Carnegie Institution, Washington, 1988-1989, pp. 72–8.

    Google Scholar 

  • Smalley, P.C., Maile, C.N., Coleman, M.L. and Rouse, J.E. (1992) LASSIE (laser ablation sampler for stable isotope extraction) applied to carbonate minerals. Chem. Geol. (Isotope Geosci.), 101, 43–52.

    Article  Google Scholar 

  • Smalley, P.C., Stijfhoorn, D.E., RÃ¥heim, A. et al. (1989) The laser microprobe and its application to the study of C and O isotopes in calcite and aragonite. Sediment. Geol., 65, 211–21.

    Article  Google Scholar 

  • Sommer, M.A., Yonover, R.N., Bourcier, W.L. and Gibson, E.K. (1985) Determination of H2O and CO2 concentrations in fluid inclusions in minerals using laser decrepitation and capacitance manometer analysis. Anal. Chem., 57, 449–53.

    Article  Google Scholar 

  • Tsui, T.-F. and Holland, H.D. (1979) The analysis of fluid inclusions by laser microprobe. Econ. Geol., 74, 1647–53.

    Article  Google Scholar 

  • Valley, J.W., Taylor, H.P. and O’Neil, J.R. (eds) (1986) Stable Isotopes in High Temperature Geological Processes Rev. Mineral., 16, Mineralogical Society of America, 570

    Google Scholar 

  • Vanderborgh, N.E. (1977) Laser induced pyrolysis techniques, in Analytical Pyrolysis (eds C.E.R. Jones and C.A. Cramers), Elsevier, Amsterdam, pp. 235–48.

    Google Scholar 

  • Wefer, G. and Killingley, J.S. (1980) Growth histories of strombid snails from Bermuda recorded in their 18O and 13C profiles. Marine Biol., 60, 129–35.

    Article  Google Scholar 

  • Wright, I.P. (1984) δ13C measurements of smaller samples. Trends Anal. Chem., 3, 210–15.

    Article  Google Scholar 

  • Zinner, E. (1989) Isotopic measurements with the ion microprobe, in New frontiers in stable isotopic research: laser probes, ion probes, and small-sample analysis (eds W.C. Shanks and R.E. Criss), US Geol. Surv. Bull., 1890, 145–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 The Mineralogical Society

About this chapter

Cite this chapter

Wright, I.P. (1995). Stable isotope ratio measurement using a laser microprobe. In: Potts, P.J., Bowles, J.F.W., Reed, S.J.B., Cave, M.R. (eds) Microprobe Techniques in the Earth Sciences. The Mineralogical Society Series, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2053-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2053-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-55100-0

  • Online ISBN: 978-1-4615-2053-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics