Skip to main content

Part of the book series: The Mineralogical Society Series ((MIBS,volume 6))

Abstract

For many years it has been possible to measure accurately the small-scale variations in the major and minor element chemistry of minerals by the electron microprobe technique, in which the sample surface is bombarded with an electron beam and the X-ray signal is measured (Chapter 2). Abundances of isotopes, trace and ultra-light elements (e.g. H and Li) which cannot be determined by this method can, however, be measured by secondary ion mass spectrometry (SIMS; Shimizu, Semet and Allègre, 1978; Shimizu and Hart, 1982; Reed, 1989; Zinner, 1989). The ion microprobe is a SIMS instrument with a focused primary ion beam, which permits in situ microanalysis of minerals in samples prepared as standard polished sections. Nearly all elements from H to U can be detected and many can be analysed quantitatively down to part-per-million levels, or below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, C.A. (1970) Analytical methods for the ion microprobe microanalyser. II. Int. J. Mass Spectrom. Ion Phys., 3, 413–28.

    Google Scholar 

  • Andersen. C.A. and Hinthorne, J.R. (1973) Thermodynamic approach to the quantitative interpretation of sputtered ion spectra. Anal. Chem., 45, 1421–38.

    Google Scholar 

  • Anon. (1992) Short reports (with discussion) of the Ion Microprobe Stable Isotope Workshop held at the University of Manchester on January 5, 1991. Chem. Geol. (Isotope Geosci.). 101.

    Google Scholar 

  • Armour. D.G., Wadsworth, M., Badheka, R. et al. (1988) Fundamental processes which affect the depth resolution obtainable in sputter depth profiling, in Secondary Ion Mass Spectrometry, SIMS VI (eds A. Benninghoven, A.M. Huber and H.W. Werner), Wiley, New York, pp. 399–407.

    Google Scholar 

  • Blundy, J.D. and Shimizu, N. (1991) Trace element evidence for plagioclase recycling in calcalkaline magmas. Earth Planet. Sci. Lett., 102, 178–97.

    Google Scholar 

  • Caporuscio, F.A. and Smyth. J.R. (1990) Trace element crystal chemistry of mantle eclogites. Contrib. Mineral. Petrol., 105, 550–61.

    Google Scholar 

  • Chaussidon. M. and Albarède, F. (1992) Secular boron isotope variations in the continental crust: an ion microprobe study. Earth Planet. Sci. Lett., 108, 229–41.

    Google Scholar 

  • Chaussidon. M., Albarède, F. and Sheppard, S.M.F. (1987) Sulfur isotope heterogeneity in the mantle from ion microprobe measurements of sulfide inclusions in diamonds. Nature, 330, 242–4.

    Google Scholar 

  • Coenraads. R.R., Sutherland. F.L. and Kinny, P.D. (1990) The origin of sapphires: U-Pb dating of zircon inclusions sheds new light. Mineral. Mag., 54, 113–22.

    Google Scholar 

  • Colby. J.W. (1975) Ion microprobe mass analysis, in Practical Scanning Electron Microscopy (eds J.I. Goldstein and H. Yakowitz), Plenum, New York. pp. 529–72.

    Google Scholar 

  • Colton, R.J., Ross, M.M. and Kidwell, D.A. (1986) Secondary ion mass spectrometry: polyatomic and molecular ion emission. Nucl. Instr. Meth. Phys. Res., B13, 259–77.

    Google Scholar 

  • Compston, W. and Pidgeon, R.T. (1986) Jack Hills, evidence of more very old detrital zircons in Western Australia. Nature, 321, 766–9.

    Google Scholar 

  • Compston, W., Williams, I.S. and Meyer, C. (1984) U/Pb geochronology of zircons from Breccia 73217 using a sensitive high mass-resolution ion microprobe. Proc. 14th Lunar Planetary Sci. Conf., J. Geophys. Res., 89, B525–34.

    Google Scholar 

  • Compston, W., Kinny, P.D., Williams, I.S. and Foster, J.J. (1986) The age and Pb loss behaviour of zircons from the Isua supracrustal belt as determined by ion microprobe. Earth Planet. Sci. Lett., 80, 71–81.

    Google Scholar 

  • Compston, W., Froude, D.O., Ireland, T.R. et al. (1985) The age of (a tiny part of) the Australian continent. Nature, 317, 559–60.

    Google Scholar 

  • Compston, W., Williams, I.S., Kirschvink, J.L. et al. (1992) Zircon U-Pb ages for the early Cambrian time-scale. J. Geol. Soc. London, 149, 171–84.

    Google Scholar 

  • Crozaz, G. and McKay, G. (1990) Rare earth elements in Angra dos Reis and Lewis Cliff 86010, two meteorites with similar but distinct evolutions. Earth Planet. Sci. Lett., 97, 369–81.

    Google Scholar 

  • Crozaz, G. and Zinner, E. (1985) Ion microprobe determination of the rare earth concentration of individual meteoritic phosphate grains. Earth Planet. Sci. Lett., 73, 41–52.

    Google Scholar 

  • Crozaz, G., Pellas, P., Bourot-Denise, M. et al. (1989) Plutonium, uranium and rare earths in the phosphates of ordinary chondrites — quest for a chronometer. Earth Planet. Sci. Lett., 93, 157–69.

    Google Scholar 

  • Davis, A.M. and Olsen, E.J. (1991) Phosphates in pallasitic meteorites as probes of mantle processes in small planetary bodies. Nature. 353, 637–40.

    Google Scholar 

  • Deloule, E., Albarède, F. and Sheppard, S.M.F. (1991(a)) Hydrogen isotope hetorogeneities in the mantle from ion microprobe analysis of amphiboles from ultramafic rocks. Earth Planet. Sci. Lett., 105, 543–53.

    Google Scholar 

  • Deloule, E., Allegre, C. and Doe, B. (1986) Lead and sulfur isotope microstratigraphy of Mississippi Valley-type Deposits. Econ. Geol., 81, 1307–21.

    Google Scholar 

  • Deloule, E., Chaussidon, M. and Allé, P. (1992) Instrument limitations for isotope measurements with a Cameca-ims-3f ion microprobe: example of H. B, S and Sr. Chem. Geol., 101, 187–92.

    Google Scholar 

  • Deloule. E., France-Lanord, C. and Albarède, F. (1991(b)) D/H analysis of minerals by ion probe, in Stable Isotope Geochemistry: A tribute to Sam Epstein (eds H.P. Taylor. J.R. O’Neil and I.R. Kaplan), Geochem. Soc. Spec. Publ. 3, 53–

    Google Scholar 

  • Diamond, L.W., Marshall, D.D., Jackman, J.A. and Skippen, G.B. (1990) Elemental analysis of fluid inclusions in minerals by secondary ion mass spectrometry (SIMS): applications to cation ratios in fluid inclusions in an Archean mesothermal gold-quartz vein. Geochim. Cosmochim. Acta, 54, 545–52.

    Google Scholar 

  • Elphick, S.C. and Graham, C.M. (1988) The effect of hydrogen on oxygen diffusion in quartz: evidence for fast proton transients? Nature, 335, 243–5.

    Google Scholar 

  • Elphick, S.C., Dennis, P.F. and Graham, C.M. (1986) An experimental study of the diffusion of oxygen in quartz and albite using an overgrowth technique. Contrib. Mineral. Petrol., 92, 322–30.

    Google Scholar 

  • Elphick, S.C. Graham, C.M., Walker, F.D.L. and Holness. M.B. (1991) The application of SIMS ion imaging techniques in the experimental study of fluid-mineral interactions. Mineral. Mag., 55, 347–56.

    Google Scholar 

  • Eldridge, C.S., Compston, W., Williams, I.S. and Walshe, J.L. (1989) Sulfur isotopic analyses on the SHRIMP ion microprobe. US Geol. Surv. Bull., 1890, 163–74.

    Google Scholar 

  • Eldridge, C.S., Compston, W., Williams, I.S. et al. (1991) Isotope evidence for the involvement of recycled sediments in diamond formation. Nature, 353, 649–53.

    Google Scholar 

  • Engström, E., Lodding, A., Odelius, H. and Södervall, U. (1987) SIMS yields from glasses; secondary ion energy dependence and mass fractionation. Mikrochim. Acta, I, 387–400.

    Google Scholar 

  • Exley, R.A. (1983) Evaluation and application of the ion microprobe in the strontium isotope geochemistry of carbonates. Earth Planet. Sci. Lett., 65, 303–10.

    Google Scholar 

  • Fahey, A.J., Goswami, J.N., McKeegan, K.D. and Zinner, E. (1987) 26A1, 244Pu, 50Ti, REE, and trace element abundances in hibonite grains from CM and CV meteorites. Geochim. Cosmochim. Acta, 51, 329–50.

    Google Scholar 

  • Farver, J.R. and Yund. R.A. (1990) The effect of hydrogen, oxygen, and water fugacity on oxygen diffusion in alkali feldspar. Geochim. Cosmochim. Acta, 54, 2953–64.

    Google Scholar 

  • Farver, J.R. and Yund. R.A. (1991) Oxygen diffusion in quartz: dependence on temperature and water fugacity. Chem. Geol., 90, 55–70.

    Google Scholar 

  • Froude, D.O., Ireland, T.R., Kinny, P.D. et al. (1983) Ion microprobe identification of 4100–4200 Myr-old terrestrial zircons. Nature, 304, 616–8.

    Google Scholar 

  • Giletti, B.J., Semet, M.P. and Yund, R.A. (1978) Studies in diffusion — III. Oxygen in feldspars: an ion microprobe determination. Geochim. Cosmochim. Acta, 42, 45–57.

    Google Scholar 

  • Gnaser, H. and Hutcheon, I.D. (1987) Velocity-dependent isotope fractionation in secondaryion emission. Phys. Rev. B, 35, 877–89.

    Google Scholar 

  • Graham. C.M. and Elphick, S.C. (1990) A re-examination of the role of hydrogen in Al-Si interdiffusion in feldspars. Contrib. Mineral. Petrol., 104, 481–91.

    Google Scholar 

  • Graham. C.M. and Elphick, S.C. (1991) Some experimental constraints on the role of hydrogen in oxygen and hydrogen diffusion and Al-Si interdiffusion in silicates, in Diffusion, Atomic Ordering and Mass Transport (ed. J. Ganguly), Advances in Physical Chemistry, 8, Springer-Verlag. New York, pp. 248–85.

    Google Scholar 

  • Graham. C.M. and Valley, J.W. (1992) Sulphur isotope analysis of pyrites. Chem. Geol., 101, 169–72.

    Google Scholar 

  • Harris, N.B.W., Gravestock, P. and Inger, S. (1992) Ion-microprobe determinations of traceelement concentrations in garnets from anatectic assemblages. Chem. Geol., 100, 41–49.

    Google Scholar 

  • Hart. S.R. and Dunn, T. (1993) Experimental cpx/melt partitioning of 24 trace elements. Contrib. Mineral. Petrol., 113. 1–8.

    Google Scholar 

  • Harte. B. and Otter, M. (1992) Carbon isotope measurement on diamonds. Chem. Geol., 101, 177–83.

    Google Scholar 

  • Hayes, J.M. and Schoeller, D.A. (1977) High precision pulse counting: limitations and optimal conditions. Anal. Chem., 49, 306–11.

    Google Scholar 

  • Hervig, R.L. and Dunbar, N.W. (1992) Cause of chemical zoning in the Bishop (California) and Bandalier (New Mexico) magma chambers. Earth Planet. Sci. Lett., 111, 97–108.

    Google Scholar 

  • Hervig. R.L. and Peacock, S.M. (1989) Implications of trace element zoning in deformed quartz from the Santa Catalina mylonite zone. J. Geol., 89, 343–50.

    Google Scholar 

  • Hervig. R.L. and Williams, P. (1986) Non-oxygen negative ion beams for oxygen isotopic analysis in insulators, in Secondary Ion Mass Spectrometry, SIMS V, (eds A. Benninghoven, R.J. Colton, D.S. Simmons and H.W. Werner), Springer-Verlag, New York. pp. 152–4.

    Google Scholar 

  • Hervig, R.L., Thomas, R.M. and Williams, P. (1989) Charge neutralization and oxygen isotopic analysis of insulators with the ion microprobe. US Geol. Surv. Bull., 1890, 137–42.

    Google Scholar 

  • Hickmott, D. and Spear, F.S. (1992) Major-and trace-element zoning in garnets from calcareous pelites in the NW Shelburne Falls Quadrangle, Massachusetts: garnet growth histories in retrograde rocks. J. Petrol., 33, 965–1005.

    Google Scholar 

  • Hinthorne. J.R., Andersen, C.A., Conrad, R.L. and Lovering, J.F. (1979) Single-grain 207Pb/ 206Pb and U/Pb age determination with a 10 micron spatial resolution using the ion microprobe mass analyser (IMMA). Chem. Geol., 25, 271–303.

    Google Scholar 

  • Hinton R.W. (1990) Ion microprobe trace-element analysis of silicates: measurement of multielement glasses. Chem. Geol., 83, 11–25.

    Google Scholar 

  • Hinton, R.W. and Long, J.V.P. (1979) High resolution ion microprobe measurements of lead isotopes: variations within single zircons from Lac Seul. Northwestern Ontario. Earth Planet. Sci. Lett., 45. 309–25.

    Google Scholar 

  • Hinton, R.W. and Upton, B.J.G. (1991) the chemistry of zircon: variations within and between large crystals from syenite and alkali basalt xenoliths. Geochim. Cosmochim. Acta, 55, 3287–302.

    Google Scholar 

  • Hinton, R.W., Davis, A.M., Scatena-Wachel, D.E. et al. (1988) A chemical and isotopic study of hibonite-rich refractory inclusions in primitive meteorites. Geochim. Cosmochim. Acta, 52, 2573–98.

    Google Scholar 

  • Ireland, T.R., Zinner, E., Fahey, A.J. and Esat, T.M. (1992) Evidence for distillation in the formation of HAL and related hibonite inclusions. Geochim. Cosmochim. Acta, 56. 2503–20.

    Google Scholar 

  • Jolliff, B.L., Papike, J.J. Shearer, C.K. and Shimizu, N. (1989) Inter-and intra-crystal REE variations in apatite from the Bob Ingersoll pegmatite. Black Hills, South Dakota. Geochim. Cosmochim. Acta, 53, 429–41.

    Google Scholar 

  • Johnson, K.T.M., Dick, H.J. and Shimizu, N. (1990) Melting in the oceanic mantle: an ion microprobe study of diopsides in abyssal peridotites. J. Geophys. Res., 95, 2661–78.

    Google Scholar 

  • Jull, A.J.T., Wilson, G.C., Long, J.V.P. et al. (1980) Sputtering rates of minerals and implications for abundances of solar elements in Lunar samples. Nucl. Instr. Meth., 168, 357–65.

    Google Scholar 

  • Kinny, P.D., Compston, W. and Williams, I.S. (1991) A reconnaissance ion-probe study of hafnium isotopes in zircons. Geochim. Cosmochim. Acta, 55, 849–59.

    Google Scholar 

  • Kober, B., Pidgeon, R.T. and Lippolt, H.J. (1989) Single-zircon dating by stepwise Pbevaporation constrains the Archean history of detrital zircons from the Jack Hills. Western Australia. Earth Planet. Sci. Lett., 91, 286–96.

    Google Scholar 

  • Kovalenko. V.I., Hervig, R.L. and Sheridan, M.F. (1988) Ion microprobe analyses of trace elements in anorthoclase, hedenbergite, aenigmatite, quartz, apatite and glass in pantellerite: evidence for high water contents in pantellerite melt. Am. Mineral., 73, 1038–45.

    Google Scholar 

  • Krogh. T.E. (1973) A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim. Cosmochim. Acta. 37, 485–94.

    Google Scholar 

  • Lau. W.M., Mclntyre, N.S., Metson. J.B. et al. (1985) Stabilization of charge on electrically insulating surfaces during SIMS experiments — experimental and theoretical studies of the specimen isolation method. Surf. Interface Anal., 7, 275–81.

    Google Scholar 

  • Levi-Setti, R., Crow, G. and Wang, Y.L. (1985) Progress in high resolution scanning microscopy and secondary ion mass spectrometry imaging microanalysis. Scann. Elec. Microsc., 535–51.

    Google Scholar 

  • Long. J.V.P. and Hinton, R.W. (1984) The intensity of metal hydride peaks in secondary positive-ion spectra from silicates. Int. J. Mass Spectrom. Ion Proc., 55. 307–18.

    Google Scholar 

  • Lorin. J.C. (1992) Oxygen isotope analysis on the Cameca ims-300. Chem. Geol., 101, 193–5.

    Google Scholar 

  • Lorin. J.C., Havette. A. and Slodzian, G. (1982) Isotope effect in secondary ion emission, in Secondary Ion Mass Spectrometry, SIMS III (eds A. Benninghoven. J. Giber. J. Laszlo et al.). Springer-Verlag, Berlin, pp. 140–50.

    Google Scholar 

  • Lorin. J.C., Slodzian. J.C., Dennebouy, R. and Chaintreau, M. (1990) SIMS measurement of oxygen isotope-ratios in meteorites and primitive solar system matter, in Secondary Ion Mass Spectrometry, SIMS VII (eds A. Benninghoven, K.D. McKeegan, H.A. Storms and H.W. Werner), Wiley-Interscience, New York. pp. 377–80.

    Google Scholar 

  • Lundberg, L.L., Crozaz, G. and McSween, H.Y. (1990) Rare earth elements in minerals of the ALHA 77005 shergottite and implications for its parent magma and crystallization history. Geochim. Cosmochim. Acta, 54, 2535–47.

    Google Scholar 

  • Lundberg, L.L., Crozaz, G., McKay, G. and Zinner, E. (1988) Rare earth element carriers in the Shergotty meteorite and implications for its chronology. Geochim. Cosmochim. Acta, 52, 2147–63.

    Google Scholar 

  • Maas, R., Kinny, P.D., Williams, I.S. et al. (1992) The Earth’s oldest known crust: a geochronological and geochemical study of 3900–4200 Ma old detrital zircons from Mt Narryer and Jack Hills, Western Australia. Geochim. Cosmochim. Acta, 56, 1281–1300.

    Google Scholar 

  • MacRae, N.D., Botazzi, P., Ottolini, L. and Vannucci, R. (1993) Quantitative REE analysis of silicates by SIMS: conventional energy filtering vs specimen isolation mode. Chem. Geol., 103, 45–54.

    Google Scholar 

  • Mason. R.A. (1987) Ion microprobe analysis of trace elements in calcite with an application to the cathodoluminescence zonation of limestone cements from the lower carboniferous of South Wales, UK. Chem. Geol., 64, 209–24.

    Google Scholar 

  • Mazzuchelli, M., Rivalenti, G., Vannucci, R. et al. (1992) Trace element distribution between clinopyroxene and garnet in gabbroic rocks of the deep crust: an ion microprobe study. Geochim. Cosmochim. Acta, 56, 2371–85.

    Google Scholar 

  • McKeegan, K.D. (1987) Oxygen isotopic abundances in refractory stratospheric dust particles: proof of extra-terrestrial origins. Science, 237, 1468–71.

    Google Scholar 

  • McKeegan, K.D., Walker, R.M. and Zinner, E. (1985) Ion microprobe isotopic measurements of individual interplanetary dust particles. Geochim. Cosmochim. Acta, 49, 1971–87.

    Google Scholar 

  • Metson, J.B., Bancroft, G.M. and Nesbitt, H.W. (1985) Analysis of minerals using specimen isolated secondary ion mass spectrometry. Scann. Electr. Microsc., 1985, 595–603.

    Google Scholar 

  • Migeon, H.N., Schumacher, M., Le Goux, J.J. and Rasser. B. (1989) Three-dimensional analysis of trace elements with the Cameca IMS 4F. Fresenius Z. Anal. Chem., 333, 333–4.

    Google Scholar 

  • Mitchell, R.H. and Reed, S.J.B (1988) Ion microprobe determination of rare earth elements in perovskite from kimberlites and alnoites. Mineral. Mag., 52, 331–9.

    Google Scholar 

  • Muir, I.J. and Nesbitt, H.W. (1991) Effects of aqueous cations on the dissolution of labradorite feldspar. Geochim. Cosmochim. Acta, 55, 3181–9.

    Google Scholar 

  • Muir, I.J. and Nesbitt, H.W. (1992) Controls on differential leaching of calcium and aluminum from labradorite in dilute electrolyte solutions. Geochim. Cosmochim. Acta, 56, 3979–85.

    Google Scholar 

  • Muir, I.J., Bancroft. G.M., and Metson, J.B. (1987) A comparison of conventional and specimen isolation filtering techniques for the SIMS analyses of geologic materials. Int. J. Mass Spectrom. Ion Proc., 75. 159–70.

    Google Scholar 

  • Muir, I.J., Bancroft, G.M., Shotyk, W. and Nesbitt, H.W. (1990) A SIMS and XPS study of dissolving plagioclase. Geochim. Cosmochim. Acta, 54, 2247–56.

    Google Scholar 

  • Olsen, E., Schwade, J., Davis, A.M. et al. (1991) Watson: a new link in the HE iron chain. Lunar Planet. Sci., XXII, 999–1000.

    Google Scholar 

  • Pan, V., Holloway, J.R. and Hervig, R.L. (1991) The pressure and temperature dependence of carbon dioxide solubility in tholeiitic basalt melts. Geochim. Cosmochim. Acta, 55, 1587–95.

    Google Scholar 

  • Perny, B., Eberhardt, P., Ramseyer, K. et al. (1992) Microdistributions of Al, Li, and Na in α quartz: possible causes and correlation with short-lived cathodoluminescence. Am. Mineral., 77, 534–44.

    Google Scholar 

  • Pimminger, M., Grasserbauer, M., Schroll, E. and Cerny, I. (1984) Microanalysis of galena by secondary ion mass spectrometry for the determination of sulfur isotopes. Anal. Chem., 56, 407–11.

    Google Scholar 

  • Ray, G. and Hart, S.R. (1982) Quantitative analysis of silicates by ion microprobe. Int. J. Mass Spectrom. Ion Phys., 44, 231–55.

    Google Scholar 

  • Reed, S.J.B. (1983) Secondary ion yields of rare earths. Int. J. Mass Spectrom. Ion Proc., 54, 31–40.

    Google Scholar 

  • Reed, S.J.B. (1984) Secondary-ion mass spectrometry/ion probe analysis for rare earths. Scann. Bear. Microsc., 1984, 529–35.

    Google Scholar 

  • Reed, S.J.B. (1985) Ion probe determination of rare earths in allanite. Chem. Geol., 48, 137–43.

    Google Scholar 

  • Reed, S.J.B. (1986) Ion microprobe determination of rare earth elements in accessory minerals. Mineral. Mag., 50, 3–15.

    Google Scholar 

  • Reed, S.J.B. (1989) Ion microprobe analysis-a review of geological applications. Mineral. Mag., 53, 3–24.

    Google Scholar 

  • Reed, S.J.B., and Smith, D.G.W. (1985) Ion probe determination of rare earth elements in merrillite and apatite in chondrites. Earth Planet. Sci. Lett., 72, 238–44.

    Google Scholar 

  • Reed, S.J.B., Smith, D.G.W. and Long, J.V.P. (1983) Rare earth elements in chondritic phosphates-implications for 244Pu chronology. Nature, 306, 172–3.

    Google Scholar 

  • Roddick, J.C., Loveridge, W.D. and Parrish, R.R. (1987) Precise U/Pb dating of zircon at the sub-nanogram Pb level. Chem. Geol., 66, 111–21.

    Google Scholar 

  • Rudat, M.A. and Morrison, G.H. (1978) Detector discrimination in SIMS: ion-to-electron converter yield factors for positive ions. Int. J. Mass Spectrom. Ion Phys., 27, 249–61.

    Google Scholar 

  • Rudat, M.A. and Morrison, G.H. (1979) Energy spectra of ions sputtered from elements by O2+: a comprehensive study. Surf. Sci., 82, 549–76.

    Google Scholar 

  • Schärer, U. and Allègre, C.J. (1985) Determination of the age of the Australian continent by single-grain zircon analysis of Mt Narryer metaquartzite. Nature, 315, 52–5.

    Google Scholar 

  • Shanks, W.C. III and Criss, R.E. (eds) (1989) New frontiers in stable isotopic research: laser probes, ion probes, and small-scale analysis. US Geol. Surv. Bull., 1890.

    Google Scholar 

  • Shaw, D.M., Higgins, M.D., Hinton, R.W. et al. (1988(a)) Boron in chondritic meteorites. Geochim. Cosmochim. Acta, 52, 2311–9.

    Google Scholar 

  • Shaw, D.M., Higgins, M.D., Truscott, M.G. and Middleton, T.A. (1988(b)) Boron contamination in polished thin sections of meteorites: implications for other trace element studies by alpha track images or ion microprobe. Am. Mineral., 73, 894–900.

    Google Scholar 

  • Shimizu, N. (1990) The oscillatory trace element zoning of augite phenocrysts. Earth Sci. Rev., 29, 27–37.

    Google Scholar 

  • Shimizu, N. and Hart, S.R. (1982) Applications of the ion microprobe to geochemistry and cosmochemistry. Ann. Rev. Earth Planet. Sci., 10, 483–526.

    Google Scholar 

  • Shimizu, N. and Richardson, S.H. (1987) Trace element abundance patterns of garnet inclusions in peridotite-suite diamonds. Geochim. Cosmochim. Acta, 51, 755–8.

    Google Scholar 

  • Shimizu, N., Semet, M.P. and Allègre, C.J. (1978) Geochemical applications of quantitative ion-microprobe analysis. Geochim. Cosmochim. Acta, 42, 1321–34.

    Google Scholar 

  • Sisson, T.W. (1991) Pyroxene-high silica rhyolite trace element partition coefficients measured by ion microprobe. Geochim. Cosmochim. Acta, 55, 1575–85.

    Google Scholar 

  • Sisson, T.W., and Bacon, C.R. (1992) Garnet/high-silica rhyolite trace element partition coefficients measured by ion microprobe. Geochim. Cosmochim. Acta, 56, 2133–6.

    Google Scholar 

  • Slodzian, G. (1980) Microanalyzers using secondary ion emission. Adv. Electronics Electron Phys. Suppl. 13B, 1–44.

    Google Scholar 

  • Slodzian, G. (1988) Introduction to fundamentals in direct and scanning ion microscopy, in Secondary Ion Mass Spectrometry, SIMS VI (eds A. Benninghoven, A.M. Huber and H.W. Werner), John Wiley, Chichester, pp. 3–12.

    Google Scholar 

  • Slodzian, G., Lorin, J.C. and Havette, A. (1980) Isotopic effect on the ionization probabilities in secondary ion emission. J. Physique Lett., 41, L555–8.

    Google Scholar 

  • Slodzian, G., Daigne, B., Girard, F. and Hillion, F. (1991) A thermal ionization source for a Cs+ ion probe. Abstracts of Eighth Int. Conf. Secondary Ion Mass Spectrometry, SIMS VIII (Amsterdam), p. 132.

    Google Scholar 

  • Södervall, U., Odelius, H., Lodding, A. and Engström E.U. (1987) Mass fractionation and energy distribution of sputtered monatomic positive ions. Scann. Microsc. 1, 471–7.

    Google Scholar 

  • Steele, I.M., Hervig, R.L., Hutcheon, I.D. and Smith, J.V. (1981) Ion microprobe techniques and analyses of olivine and low-Ca pyroxene. Am. Mineral., 66, 526–46.

    Google Scholar 

  • Stevie, F.A., Kahora, P.M., Singh, S. and Kroko, L. (1988) Atomic and molecular relative secondary ion yields of 46 elements in Si for O2 + and Cs+ bombardment, in Secondary Ion Mass Spectrometry, SIMS VI (eds A. Benninghoven, A.M. Huber and H.W. Werner), Wiley, New York. pp. 319–22.

    Google Scholar 

  • Storms. H.A., Brown, K.F. and Stein, J.D. (1977) Evaluation of a cesium positive ion source for secondary ion mass spectrometry. Anal. Chem., 49, 2023–30.

    Google Scholar 

  • Swart. P.K. (1990) Calibration of the ion microprobe for the quantitative determination of strontium, iron, manganese, and magnesium in carbonate minerals. Anal. Chem., 62, 722–8.

    Google Scholar 

  • Thompson. M.W. (1987) The velocity distribution of sputtered atoms. Nucl. Inst. Meth., B18, 411–29.

    Google Scholar 

  • Tucker. R.D., Krogh, T.E., Ross. R.J. and Williams. S.H. (1990) Time-scale calibrated by high-precision U-Pb zircon dating of interstratified volcanic ashes in the Ordovician and lower Silurian stratotypes of Britain. Earth Planet. Sci. Lett., 100, 51–8.

    Google Scholar 

  • Valley. J.W. and Graham, C.M. (1991) Ion microprobe analysis of oxygen isotope ratios in granulite facies magnetites: diffusive exchange as a guide to cooling history. Contrib. Mineral. Petrol., 109, 38–52.

    Google Scholar 

  • Valley. J.W. and Graham. C.M. (1992) Oxygen isotope measurement of magnetites. Chem. Geol., 101, 173–6.

    Google Scholar 

  • Veizer. J., Hinton. R.W., Clayton. R.N. and Lerman. A. (1987) Chemical diagenesis of carbonates in thin-sections: ion microprobe as a trace element tool. Chem. Geol., 64, 225–37.

    Google Scholar 

  • Walker. F.D.L. (1990) Ion microprobe study of intergrain micropermeability in alkali feldspars. Contrib. Mineral. Petrol., 106, 124–8.

    Google Scholar 

  • Webster. J.D. (1992(a)) Fluid-melt interactions involving Cl-rich granites: Experimental study from 2 to 8 kbar. Geochim. Cosmochim. Acta. 56, 659–78.

    Google Scholar 

  • Webster, J.D. (1992(b)) Water solubility and chlorine partitioning in Cl-rich granitic systems: effects of melt composition at 2 kbar and 800°C. Geochim. Cosmochim. Acta, 56, 679–87.

    Google Scholar 

  • Webster. J.D. and Duffield. W.A. (1991) Volatiles and lithophile elements in the Taylor Creek Rhyolite: constraints from glass inclusion analysis. Am. Mineral., 76, 1628–45.

    Google Scholar 

  • Williams. P. (1985) Limits of quantitative microanalysis using secondary ion mass spectrometry. Scann. Electr. Microsc., 1985, 553–61.

    Google Scholar 

  • Williams. I.S. and Claesson, S. (1987) Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides. II. Ion microprobe zircon U-Th-Pb. Contrib. Mineral. Petrol., 97, 205–17.

    Google Scholar 

  • Wilson. R.G. and Novak, S.W. (1988) Systematics of SIMS relative sensitivity factors versus electron affinity and ionization potential for Si, Ge, GaAs, GaP, InP and HgCdTe determined from implant calibration standards for about 50 elements, in Secondary Ion Mass Spectrometry, SIMS VI (eds A. Benninghoven, A.M. Huber and H.W. Werner), Wiley, New York, pp. 57–61.

    Google Scholar 

  • Wilson. R.G., Novak, S.W., Smith. S.P. et al. (1988) Relative sputter rates and ion yields of semiconductors, metals and insulators under oxygen and cesium ion bombardment, in Secondary Ion Mass Spectrometry, SIMS VI (eds A. Benninghoven, A.M. Huber and H.W. Werner), Wiley, New York. pp. 133–4.

    Google Scholar 

  • Yu, M.L. (1987) A bond breaking model for secondary ion emission. Nucl. Instr. Meth., B18, 542–8.

    Google Scholar 

  • Yurimoto, H., Kurosawa, M. and Sueno, S. (1989) Hydrogen analysis in quartz and quartz glasses by secondary ion mass spectrometry. Geochim. Cosmochim. Acta, 53, 751–5.

    Google Scholar 

  • Zinner. E. (1989) Isotopic measurements with the ion microprobe. US Geol. Surv. Bull., 1890, 145–62.

    Google Scholar 

  • Zinner. E. and Crozaz. G. (1986(a)) Ion microprobe determination of the abundances of all the rare earth elements in single mineral grains, in Secondary Ion Mass Spectrometry. SIMS V (eds A. Benninghoven, R.J. Colton. D.S. Simmons and H.W. Werner). Springer-Verlag. New York, pp. 444–6.

    Google Scholar 

  • Zinner. E. and Crozaz, G. (1986(b)) A method for the quantitative measurement of rare earth elements in the ion microprobe. Int. J. Mass Spectrom. Ion Proc., 69, 17–38.

    Google Scholar 

  • Zinner, E., Fahey, A.J. and McKeegan, K.D. (1986) Characterisation of electron multipliers by charge distributions, in Secondary Ion Mass Spectrometry, SIMS V (eds A. Benninghoven. R.J. Colton, D.S. Simmons and H.W. Werner), Springer-Verlag, New York, pp. 170–2.

    Google Scholar 

  • Zinner, E., Tang, M. and Anders, E. (1987) Large isotopic anomalies of Si, C, N, and noble gases in interstellar silicon carbide from the Murray meteorite. Nature, 330, 730–2.

    Google Scholar 

  • Zinner, E., Tang, M, and Anders, E. (1989) Interstellar SiC in the Murchison and Murray meteorites: Isotopic composition of Ne, Xe, Si, C, and N. Geochim. Cosmochun. Acta, 53, 3273–90.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 The Mineralogical Society

About this chapter

Cite this chapter

Hinton, R.W. (1995). Ion microprobe analysis in geology. In: Potts, P.J., Bowles, J.F.W., Reed, S.J.B., Cave, M.R. (eds) Microprobe Techniques in the Earth Sciences. The Mineralogical Society Series, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2053-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2053-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-55100-0

  • Online ISBN: 978-1-4615-2053-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics