Skip to main content

Part of the book series: The Mineralogical Society Series ((MIBS,volume 6))

Abstract

There are three phenomena produced by the interaction of a high-energy electron beam (100–1000 keV) with a thin specimen that can be used to provide chemical information in the analytical (transmission) electron microscope (AEM or ATEM). The origin of the most widely used of these, the characteristic X-ray spectrum, is explained in section 2.2.2 and quantification of the X-ray signal in the AEM follows procedures that are modifications of those used in electron probe microanalysis (EPMA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, S.M. (1981) Foil thickness measurement from convergent-beam diffraction patterns. Phil. Mag., A43, 325–35.

    Google Scholar 

  • Barber, D.J. (1993) Preparation of rock, mineral, ceramic and glassy materials, in Procedures in Electron Microscopy (eds A.W. Robards and A.J. Wilson), Wiley, Chichester, 1140 p

    Google Scholar 

  • Bishop, H.E. (1974) Recent instrumental developments in microanalysis. in Advances in Analysis of Microstructural Features by Electron Beam Techniques, Metals Soc., London, pp. 1–18.

    Google Scholar 

  • Boswell, E., Reece, M.J. and Gee, M.G. (1992) Preparation of hard particle powders for examination in the transmission electron microscope. J. Microsc., 167, 123–6.

    Article  Google Scholar 

  • Budd, P.M. and Goodhew, P.J. (1988) Eight Element Analysis in the Transmission Electron Microscope: WEDS and EEES, Oxford University Press/Royal Microscopical Society, 73 pp.

    Google Scholar 

  • Buseck, P.R. and Self, P. (1992) Electron energy-loss spectrometry (EELS) and electron channelling (ALCHEMI), in Minerals and Reactions at the Atomic Scale: Transmission Electron Microscopy (ed. P.R. Buseck), Mineralogical Society of America, Washington, pp. 141–80.

    Google Scholar 

  • Champness, P.E. (1987) Convergent beam electron diffraction. Mineral. Mag., 51, 33–48.

    Article  Google Scholar 

  • Champness, P.E. and Devenish (1990) Elemental mass loss in silicate minerals during X-ray analysis. Trans. Roy. Microsc. Soc., 1, 177–80.

    Google Scholar 

  • Cliff, G. and Kenway, P.B. (1982) The effects of spherical aberration in probe-forming lenses on probe size, image resolution and X-ray spatial resolution in scanning transmission electron microscopy, in Microbeam Analysis — 1982 (ed. K.F.J. Heinrich), pp. 107–10.

    Google Scholar 

  • Cliff, G. and Lorimer, G.W. (1975) The quantitative analysis of thin specimens. J. Microsc., 103, 203–7.

    Article  Google Scholar 

  • Cliff, G. and Lorimer, G.W. (1992) AEM: from microns to atoms, Proc. 50th Ann. EMSA Meeting, pp. 1464–5.

    Google Scholar 

  • Cliff G. Powell D.J. Pilkington R. et al. (1984) X-ray microanalysis of second phase particles in thin foils in Electron Microscopy and Analysis 1983 (ed. P. Doig) Inst. Phys. Bristol p. 63–6

    Google Scholar 

  • Cooke, C.J. and Duncumb, P. (1969) Performance analysis of a combined electron microscope and microprobe analyser ‘EMMA’, in Proc 5th Intl. Congr. on X-ray optics and Microanalysis (eds G. Mollenstedt and K.H. Gaukler), pp. 245–7.

    Google Scholar 

  • Devenish, R.W. and Champness, P.E. (1993) The rate of mass loss in silicate minerals during X-ray analysis, Proc 13th Intl. Congr. on X-ray optics and microanalysis, Manchester, 1992, Inst. Physics, London and Bristol, p. 233–6.

    Google Scholar 

  • Duncumb, P. (1966) Precipitation studies with EMMA-4 — A combined electron microscope and X-ray analyser, in The Electron Microprobe (eds T.D. McKinley, K.F.J. Heinrich and D.B. Wittry), Wiley, New York

    Google Scholar 

  • Egerton, R.F. (1981) Values of K-shell partial cross-sections for electron energy-loss spectrometry. J. Microsc., 123, 333–7.

    Article  Google Scholar 

  • Egerton, R.F. (1986) Electron Energy Loss Spectroscopy, Plenum Press, New York, 410 pp.

    Google Scholar 

  • Goldstein, J.I., Costley, J.L., Lorimer, G.W. and Reed, S.J.B. (1977) Quantitative X-ray analysis in the electron microscope, in SEM/77 (ed. O. Johari), IITRI, Chicago, pp. 315–24.

    Google Scholar 

  • Goldstein, J.I., Lyman, C.E. and Williams, D.B. (1989) The wavelength-dispersive spectrometer and its proposed use in the analytical electron microscope. Ultramicroscopy, 28, 162–4.

    Article  Google Scholar 

  • Goldstein, J.I. and Williams, D.B. (1992) X-ray microanalysis and electron energy loss spectrometry in the analytical electron microscope: review and future directions. Microbeam Anal., 1, 29–53.

    Google Scholar 

  • Griffin, B.J. and Johnson, A.W.S. (1992) Experiences with HPGe EDS detectors on a Philips EM430 and a JEOL 6300 FESEM, Proc 50th Ann. Meeting EMSA, pp. 1232–3.

    Google Scholar 

  • Horita, Z., Sano, T. and Nemoto, M. (1987) Simplification of X-ray absorption correction in thin-sample quantitative microanalysis. Ultramicroscopy, 21, 271–6.

    Article  Google Scholar 

  • Horita, Z., Sano, T. and Nemoto, M. (1989) Energy dispersive X-ray microanalysis in the analytical electron microscope. ISIJ International, 29, 179–90.

    Article  Google Scholar 

  • Horita, Z., Takeshi, S. and Nemoto, M. (1986) An extrapolation method for the determination of Cliff-Lorimer k AB factors at zero thickness. J. Microsc, 143, 215–31.

    Article  Google Scholar 

  • Hunt, J.A. and Williams, D.B. (1991) Electron energy-loss spectrum-imaging. Ultramicroscopy. 38, 47–73.

    Article  Google Scholar 

  • Joy, D.C. and Maher, D.M. (1977) Sensitivity limits for thin specimen X-ray analysis. Scanning Electron Microscopy, 1, 325–33.

    Google Scholar 

  • Joy, D.C., Romig, A.D. and Goldstein, J.I. (eds) (1986) Principles of Analytical Microscopy. Plenum, New York.

    Google Scholar 

  • Kelly, P.M., Jostens, A., Blake, R.G. and Napier, J.G. (1975) Determination of foil thickness by scanning transmission electron microscopy. Phys. Stat. Sol., A31, 771–9.

    Article  Google Scholar 

  • Leapman, R.D. and Newbury, D.E. (1992) Trace element analysis of transition elements and rare earths by parallel EELS. Proc. 50th Ann. Meeting EMSA, pp. 1250–1.

    Google Scholar 

  • Lee, S.Y. and Jackson, M.L. (1975) Micaceous occlusions in kaolinite observed by ultramicrotomy and high resolution electron-microscopy. Clays and Clay Minerals, 34, 125–9.

    Article  Google Scholar 

  • Livi, K.J.T. and Veblen, D.R. (1987) ‘Eastonite’ from Easton. Pennsylvania: a mixture of phlogopite and a new form of serpentine. Amer. Mineral., 72, 113–25.

    Google Scholar 

  • Lorimer, G.W. (1987) Quantitative X-ray microanalysis of thin specimens in the transmission electron microscope; a review. Mineral Mag., 51, 49–60.

    Article  Google Scholar 

  • Lorimer, G.W., Cliff, G., Champness, P.E. et al. (1984) In situ X-ray microanalysis of second phase particles in thin foils, in Analytical Electron Microscopy — 1984 (eds D.B. Williams and D.C. Joy), San Francisco Press, San Francisco, pp. 153–

    Google Scholar 

  • Malis, T., Cheng, S.C. and Egerton, R.F. (1988) EELS log-ratio technique for specimenthickness measurement in the TEM. J. Electron Microsc. Technique, 8, 193–200.

    Article  Google Scholar 

  • McGill, R.J. and Hubbard, F.H. (1981) Thin film k-value calibration for low atomic number elements using silicate standards, in Quantitative Microanalysis with High Spatial Resolution (eds G.W. Lorimer, M.H. Jacobs and P. Doig), Metals Society, London, pp. 30–

    Google Scholar 

  • Michael, J.R., Williams, D.B., Klein, C.F. and Ayer, R. (1990) The measurement and calculation of the X-ray spatial resolution obtained in the analytical electron microscope. J. Microsc, 147, 289–303.

    Article  Google Scholar 

  • Morris, P.L., Ball, M.D. and Statham, P.J. (1980) The correction of thin foil microanalysis data for X-ray absorption effects, in Electron Microscopy and Analysis 1979 (ed. T. Mulvey), Inst. Phys., Bristol, p. 413–6.

    Google Scholar 

  • Mory, C. and Colliex, C. (1989) Elemental analysis near the single-atom detection level by processing sequences of energy-filtered images. Ultramicroscopy, 28, 2339–46.

    Article  Google Scholar 

  • Nicholson, W.A.P., Gray, C.C., Chapman, J.N. and Robertson, B.W. (1982) Optimising thin film X-ray spectra for quantitative analysis. J. Microsc, 125, 25–40.

    Article  Google Scholar 

  • Nockolds, C., Nasir, M.J., Cliff, G. and Lorimer, G.W. (1980) X-ray fluorescence correction in thin foil analysis and direct methods for foil thickness measurement, in Electron Microscopy and Analysis 1979 (ed. T. Mulvey), Institute of Physics, Bristol, pp. 417–20.

    Google Scholar 

  • Nord, G.L. Jr (1982) Analytical electron microscopy in mineralogy; exsolved phases in pyroxenes. Ultramicroscopy. 8, 109–20.

    Article  Google Scholar 

  • Peacor, D.R. (1992) Analytical electron microscopy: X-ray analysis, in Minerals and Reactions at the Atomic Scale: Transmission Electron Microscopy (ed. P.R. Buseck), Mineralogical Society of America, Washington, pp. 113–40.

    Google Scholar 

  • Porter, D.A. and Westengen, H. (1981) STEM microanalysis of intermetallic phases in an Al-Fe-Si alloy, in Quantitative Microanalysis with High Spatial Resolution (eds G.W. Lorimer, M.H. Jacobs and P. Doig), Metals Society, London, pp. 94–100.

    Google Scholar 

  • Rae, D.A., Scott, V.D. and Love, G. (1981) Errors in foil thickness measurement using contamination spot method, in Quantitative Microanalysis with High Spatial Resolation (eds G.W. Lorimer, M.H. Jacobs and P. Doig), Metals Society, London, pp. 57–62.

    Google Scholar 

  • Reed, S.J.B. (1982) The single scattering model and spatial resolution in X-ray analysis of thin foils. Ultramicroscopy, 7, 405–9.

    Article  Google Scholar 

  • Rietmeijer, F.J.M. and Champness, P.E. (1982) Exsolution structures in calcic pyroxenes from the Bjerkreim-Sokndal lopolith, SW Norway. Mineral. Mag., 45, 11–24.

    Article  Google Scholar 

  • Romig, A.D. and Goldstein, J.L. (1980) Determination of the Fe-Ni and Fe-Ni-P phase diagrams at low temperatures (700 to 300°C). Metall. Trans., 11A, 1151–9.

    Google Scholar 

  • Shau, Y.-H., Feather, M.E., Essene, E.J. and Peacor, D.R. (1991) Genesis and solvus relations of submicroscopically intergrown paragonite and phengite in a blueschist from northern California. Contrib. Mineral. Petrol., 106, 367–78.

    Article  Google Scholar 

  • Sheridan, P.J. (1989) Determination of experimental and theoretical k ASi factors for a 200-kV analytical electron microscope. J. Electron Microsc. Technique, 11, 41–61.

    Article  Google Scholar 

  • Spence J.C.H. (1988) Techniques closely related to high-resolution electron microscopy in High Resolution Transmission Electron Microscopy (eds P.R. Buseck J.M. Cowley and L. Eyling) Oxford University Press p. 190–243

    Google Scholar 

  • Titchmarsh, J.M. (1989) Comparison of high spatial resolution in EDX and EELS analysis. Ultramicroscopy, 28, 347–51.

    Article  Google Scholar 

  • Van Cappellen, E. (1990) The parameterless correction method in X-ray microanalysis. Micro. Microanal. Microstruct., 1, 1–22.

    Article  Google Scholar 

  • Van Cappellen, E., Van Dyck, D., Van Landuyt, J. and Adams, F. (1984) A parameterless method to correct for X-ray absorption and fluorescence in thin film microanalysis. J. Phys. Colloq. Fr., 45, C2, 411–14.

    Google Scholar 

  • van der Pluijm, B.A., Lee, J.H. and Peacor, D.R. (1988) Analytical electron microscopy and the problem of potassium diffusion. Clays and Clay Minerals, 36, 498–504.

    Article  Google Scholar 

  • Westwood, A.D., Michael, J.R. and Notis, M.R. (1992) Experimental determination of lightelement k-factors using the extrapolation technique: oxygen segregation in aluminium nitride. J. Microsc., 167, 287–302.

    Article  Google Scholar 

  • Williams, D.B. (1984) Practical Analytical Electron Microscopy in Materials Science, Philips Electronic Instruments Inc., Mahwah, New Jersey. 153 p

    Google Scholar 

  • Williams, D.B. (1986) Standardised definitions of X-ray analysis performance criteria in the AEM, in Microbeam Analysis — 1986 (eds A.D. Romig and W.F. Chambers), pp. 443–8.

    Google Scholar 

  • Wood, J.E., Williams, D.B. and Goldstein, J.I. (1984) Experimental and theoretical determination of k AFe factors for quantitative X-ray microanalysis in the analytical electron microscope. J. Microsc., 133, 255–74.

    Article  Google Scholar 

  • Zaluzec, N.J. (1992) Current performance limits for XEDS in the AEM. Proc. 50th Ann. Meeting EMSA, pp. 1466–7.

    Google Scholar 

  • Zemyan, S.M. and Williams, D.B. (1991) X-ray analysis of heavy elements by use of L and K series lines, in Microbeam Analysis — 1991 (ed. D.G. Howitt), pp. 134–6.

    Google Scholar 

  • Zemyan, S.M. and Williams, D.B. (1992) Peak-to-background measurements on a 300 kV TEM/STEM. Proc. 50th Ann. Meeting EMSA, pp. 1236–7.

    Google Scholar 

  • Ziebold, T.O. (1967) Minimum detectability limits in electron probe microanalysis. Anal. Chem., 39, 858–63.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 The Mineralogical Society

About this chapter

Cite this chapter

Champness, P.E. (1995). Analytical electron microscopy. In: Potts, P.J., Bowles, J.F.W., Reed, S.J.B., Cave, M.R. (eds) Microprobe Techniques in the Earth Sciences. The Mineralogical Society Series, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2053-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2053-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-55100-0

  • Online ISBN: 978-1-4615-2053-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics