Skip to main content

Micro-Raman spectroscopy in the Earth Sciences

  • Chapter
Microprobe Techniques in the Earth Sciences

Part of the book series: The Mineralogical Society Series ((MIBS,volume 6))

Abstract

When a monochromatic (i.e. single-frequency) beam of light traverses a medium (gas, liquid or solid) the majority of the scattered light will remain at the incident frequency. However, a small proportion of the scattered light will be at changed frequencies, above and below the incident frequency, and this is referred to as the Raman effect. The Raman effect was first observed by Raman and Krishnan (1928) using focused sunlight and filters and relied on the visual observation of colour changes in the scattered light. However, it was not until the advent of continuous wave visible lasers, during the 1960s, that the importance of Raman spectroscopy as a routine analytical technique was realized. Furthermore, the availability of this highly intense monochromatic light source, which could be focused to a narrow waist, allowed the analysis of small volumes of gas, liquid or solid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beny-Bassez, C. and Rouzaud J.N. (1985) Characterisation of carbonaceous materials by correlated electron and optical microscopy and Raman microspectroscopy. Scann. Electron. Microsc., 1985, 119–32.

    Google Scholar 

  • Clark, R.J.H. and Franks, M.L. (1975) The resonance Raman spectrum of ultramarine blue. Chem. Phys. Lett., 34, 69–72.

    Article  Google Scholar 

  • Delhaye, M. and Dhamelincourt, P. (1975) Raman microprobe and microscope with laser excitation. J. Raman Spectrosc., 3, 33–43.

    Article  Google Scholar 

  • Dhamelincourt, P., Beny, J.M., Dubessy, J. and Poty, B. (1979) Analyse d’inclusions fluides à la microsonde MOLE à effet Raman. Bull. Mineral., 102, 600–10.

    Google Scholar 

  • Dubessy, J., Audeoud, D., Wilkins, R. and Kosztolanyi, C. (1982) The use of the Raman microprobe in the determination of electrolytes dissolved in the aqueous phase of fluid inclusions. Chem. Geol., 37, 137–50.

    Article  Google Scholar 

  • Fong, M.Y. and Nicol, M. (1971) Raman spectrum of calcium carbonate at high pressures. J. Chem. Phys., 54, 579–85.

    Article  Google Scholar 

  • Georgiev, G.M., Kalkanjiev, T.K., Petrov, V.P. and Nickolov, Z. (1984) Determination of salts in water solutions by a skewing parameter of the water Raman band. Appl. Spectrosc., 38, 593–5.

    Article  Google Scholar 

  • Gillet, P. and Goffe, B. (1988) On the significance of aragonite occurrences in the Western Alps. Contrib. Mineral. Petrol., 99, 70–81.

    Article  Google Scholar 

  • Griffith, W.P. (1974) Raman spectroscopy of minerals, in The infrared spectra of minerals (ed. V.C. Farmer), Min. Soc. Monograph, 4, 119–35.

    Google Scholar 

  • Hemley, R.J., Mao, H.K., Bell, P.M., Mysen, B.O. (1986) Raman spectroscopy of SiO2 glass at high pressure. Phys. Rev. Lett., 57, 747–50.

    Article  Google Scholar 

  • Jamieson, J.J. (1953) Phase equilibria in the system calcite-aragonite. J. Chem. Phys., 21, 1385–90.

    Article  Google Scholar 

  • Kubicki, J.D., Hemley, R.J. and Hofmeister, A.M. (1992) Raman and infrared study of pressure induced structural changes in MgSiO3, CaMgSiO6, and CaSiO2 glasses. Am. Mineral., 258–69.

    Google Scholar 

  • Liu, L.G. and Mernagh, T.P. (1990) Phase transitions and Raman spectra of calcite at high pressures and room temperature. Am. Mineral., 75, 801–6.

    Google Scholar 

  • Matson, D.W., Sharma, S.K. and Philpotts, J.A. (1983) The structure of high sillica alkalisilicate glasses: a Raman spectroscopic investigation. J. Non-Cryst. Solids, 58, 323–52.

    Article  Google Scholar 

  • Matson, D.W., Sharma, S.K. and Philpotts, J.A. (1986) The structure of high-silica alkalisilicate glasses along the orthoclase-anorthite and nepheline-anorthite joins. Am. Mineral., 71, 694–704.

    Google Scholar 

  • McMillan, P.F. (1984a) Structural studies of silicate glasses and melts: applications and limitations of Raman spectroscopy. Am. Mineral., 69, 622–44.

    Google Scholar 

  • McMillan, P.F. (1984b) A Raman spectroscopic study of glasses in the system CaO-MgO-SiO2. Am. Mineral., 69, 645–59

    Google Scholar 

  • McMillan, P.F. (1985) Vibrational spectroscopy in the mineral sciences, in Microscopic to Macroscopic (eds S.W. Kieffer and A. Navrotsky, Rev. Mineral), 14, Mineralogical Society of America, 9–63.

    Google Scholar 

  • McMillan, P.F. (1989) Raman spectroscopy in mineralogy and geochemistry. Ann. Rev. Earth Planet. Sci., 255–83.

    Google Scholar 

  • McMillan, P.F. and Hofmeister, A.M. (1988) Infrared and Raman spectroscopy, in Spectroscopic methods in mineralogy and geology (ed. F.C Hawthorne), Rev. Mineral., 18, Mineralogical Society of America, 99–95.

    Google Scholar 

  • Mernagh, T.P. and Wilde, A.R. (1989) The use of the laser Raman microprobe for the determination of salinity in fluid inclusions. Geochim. Cosmochim. Acta, 53, 765–71.

    Article  Google Scholar 

  • Mysen, B.O. and Virgo, D. (1980) Solubility mechanisms of carbon dioxide in silicate melts: a Raman spectroscopic study. Am. Mineral., 65, 885–99.

    Google Scholar 

  • Mysen, B.O. and Virgo, D. (1986) Volatiles in silicate melts at high pressure and temperature 2. Water in melts along the join NaAl2O2-SiO2 and a comparison of solubility mechanisms of water and fluorine. Chem. Geol., 57, 333–58.

    Article  Google Scholar 

  • Mysen, B.O., Virgo, D. and Seifert, F.A. (1982) The structure of silicate melts: implications for chemical and physical properties of natural magma. Rev. Geophys. Space Phxs., 20, 353–83.

    Article  Google Scholar 

  • Nishimura, Y., Hirawaka, A. and Tsuboi, M. (1978) Resonance Raman spectroscopy of nucleic acids. Adv. Infrared Raman Spectrosc., 5, 217–75.

    Google Scholar 

  • Pan, P. and Wood, S.A. (1991) Gold-chloride complexes in very acidic aqueous solutions at temperatures 25-300°C: a laser Raman spectroscopic study. Geochim. Cosmochim. Acta, 55, 2365–71.

    Article  Google Scholar 

  • Pasteris, J.D. and Wopenka, B. (1991) Raman spectra of graphite as indicators of degree of metamorphism. Can. Mineral., 29, 1–9.

    Google Scholar 

  • Pasteris, J.D., Wopenka, B. and Seitz, J.C. (1988) Practical aspects of quantitative laser Raman microprobe spectroscopy for the study of fluid inclusions. Geochim. Cosmochim. Acta, 52, 979–88.

    Article  Google Scholar 

  • Peck, J.A., Tait, C.D., Swanson, B.I. and Brown, G.E. (1991) Speciation of aqueous gold (III) chlorides from ultraviolet/visible absorption and Raman/resonance spectroscopies. Geochim. Cosmochim. Acta, 55, 671–76.

    Article  Google Scholar 

  • Raman. C.V. and Krishnan, K.S. (1928) A new type of secondary radiation. Nature. 121, 501.

    Article  Google Scholar 

  • Rosasco. G.J., Roedder. E. and Simmons, J.H. (1975) Laser-excited Raman spectroscopy for non-destructive partial analysis of individual phases in fluid inclusions in minerals. Science. 190, 557–60.

    Google Scholar 

  • Seifert. F., Mysen. B.O. and Virgo, D. (1982) Three-dimensional network structure of quenched melts (glass) in the systems SiO2-NaAlO2, SiO2-CaAl2O4 and SiO2-MgAl2O4. Am. Mineral., 67, 697–7

    Google Scholar 

  • Seitz. J.C. Pasteris, J.D. and Wopenka. B. (1987) Characterization of CO2-CH4-H2O fluid inclusions by microthermometry and laser Raman microprobe spectroscopy: inferences for clathrate and fluid equilibria. Geochim. Cosmochim. Acta, 51, 1651–64.

    Article  Google Scholar 

  • Tuinstra. F. and Koenig, J.L. (1970) Raman spectrum of graphite. J. Chem. Phvs., 53, 1126–30.

    Article  Google Scholar 

  • Venec-Peyre, M.-T. (1980) Microanalyseur ionique et microsonde moleculaire à laser mole: application à l’étude chimique et mineralogique du test d’ammonia becarii (Linne) Foraminifère. Bull. Centre Rech. Explor.-Prod. Elf-Aquitaine, 4, 55–79.

    Google Scholar 

  • Venec-Peyre, M.-T. and Jaeschke-Boyer, H. (1979) Interet de la microsonde moleculaire à laser Mole en systematique: Etude du foraminifère. C. R. Acad. Sci. Paris, 288, 819–21.

    Google Scholar 

  • Wang, A., Dhamelincourt, P., Dubessy, J. et al. (1989) Characterization of graphite alteration in an uranium deposit by micro-Raman spectroscopy. X-ray diffraction, transmission electron microscopy and scanning electron microscopy. Carbon, 27. 209–18.

    Article  Google Scholar 

  • White. W.B. (1974) The carbonate minerals, in The infrared spectra of minerals. Mineral. Soc. Monograph, 4, 227–79.

    Google Scholar 

  • Wopenka. B. and Pasteris, J.D. (1986) Limitations to quantitative analysis of fluid inclusions in geological samples by laser Raman microprobe spectroscopy. Appl. Spectrosc., 40, 144–51.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 The Mineralogical Society

About this chapter

Cite this chapter

Roberts, S., Beattie, I. (1995). Micro-Raman spectroscopy in the Earth Sciences. In: Potts, P.J., Bowles, J.F.W., Reed, S.J.B., Cave, M.R. (eds) Microprobe Techniques in the Earth Sciences. The Mineralogical Society Series, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2053-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2053-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-55100-0

  • Online ISBN: 978-1-4615-2053-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics