Advertisement

Efficiency of Ventricular-Arterial Coupling and Baroreflex Regulation of Blood Pressure

  • Kenji Sunagawa
  • Masaru Sugimachi
  • Yasuhiro Ikeda
  • Osamu Kawaguchi
  • Toshiaki Shishido
  • Toru Kawada
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 177)

Abstract

The heart contracts incessantly over the lifetime. The average number of contractions for human beings exceeds 2.5 billion. Since each ejection requires a large amount of energy, the energy expenditure by the heart becomes enormous. Thus conceivable that, in response to changes in demands of the heart, the regulatory system adjusts ventricular contraction to maximize energy efficiency. Indeed, stroke power output of the normal excised feline left or right ventricle was maximum when the ventricle was loaded with normal arterial impedance (1–3). This was true in the open-chest cat (4–6). In the canine left ventricle, external work was expected to be nearly maximum under normal loading conditions (7,8), as was indeed the case (9–12). Although all these studies indicated that external work or mechanical efficiency was well optimized in conscious animals as well as in anesthetized animals, it was not known whether the optimization principle holds in animals under exercise stress, where the metabolic demand of the heart is greatly increased. Thus in chronically instrumented dogs, we investigated the effect of exercise on mechanical energy transmission from the left ventricle to the arterial system (13).

Keywords

Left Ventricle Carotid Sinus Heart Circ External Work Arterial Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Piene, H., Sund, H. Flow and power output of right ventricle facing load with variable input impedance. Am J Physiol 237 (Heart Circ Physiol 6): H125–H130, 1979.PubMedGoogle Scholar
  2. 2.
    Elzinga, G., Piene, H., Jong, J.P. Left and right ventricular pump function and consequences of having two pumps in one heart. A study on the isolated cat heart. Circ Res 46:564–574, 1980.PubMedCrossRefGoogle Scholar
  3. 3.
    Piene, H., Sund, T. Does normal pulmonary impedance constitute the optimum load for the right ventricle? Am J Physiol 242:H154–H160, 1982.PubMedGoogle Scholar
  4. 4.
    Van den Horn, G.J., Westerhof, N., Elzinga, G. Optimal power generation by the left ventricle. A study in the anesthetized open thorax cat. Circ Res 56: 252–261, 1985.PubMedCrossRefGoogle Scholar
  5. 5.
    Van den Horn, G.J., Westerhof, N., Elzinga, G. Feline left ventricle does not always operate at optimum power output. Am J Physiol 250 (Heart Circ Physiol 19):H961–H967, 1986.PubMedGoogle Scholar
  6. 6.
    Toorop, G.P., Gerardus, J., Van den Horn, G.J., Elzinga, G., Westerhof, N. Matching between feline left ventricle and arterial load: optimal power or efficiency. Am J Physiol 254 (Heart Circ Physiol 23):H279–H285, 1988.PubMedGoogle Scholar
  7. 7.
    Burkhoff, D., Sagawa. K. Ventricular efficiency predicted by an analytical model. Am J Physiol 250 (Regulatory Integrative Comp Physiol 19): R1021–R1027, 1986.PubMedGoogle Scholar
  8. 8.
    Tanaka, N., Yasumura, Y., Nozawa, T., Futaki, S., Uenishi, M., Hiramori, K., Suga, H. Optimal contractility and minimal oxygen consumption for constant external work of heart. Am J Physiol 254 (Regulatory Integrative Comp Physiol 23): R933– R943, 1988.PubMedGoogle Scholar
  9. 9.
    Wilcken, D.E.L., Charlier, A.A., Hoffman, J.I.E., Guz, A. Effects of alterations in aortic impedance on the performance of the ventricles. Circ Res 14:283–293, 1964.PubMedCrossRefGoogle Scholar
  10. 10.
    Sunagawa, K., Maughan, W.L., Sagawa, K. Optimal arterial resistance for the maximal stroke work studied in isolated canine left ventricle. Circ Res 56:586–595, 1985.PubMedCrossRefGoogle Scholar
  11. 11.
    Suga, H., Igarashi, Y., Yamada, O., Goto, Y. Mechanical Efficiency of the left ventricle as a function of preload, afterload, and contractility. Heart and Vessel 1:3–8, 1985.CrossRefGoogle Scholar
  12. 12.
    Myhre, E.S.P., Johansen, A., Bjornstad, Piene, H. The effect of contractility and preload on matching between the canine left ventricle and afterload. Circulation 73:161–171, 1986.PubMedCrossRefGoogle Scholar
  13. 13.
    Hayashida, K., Sunagawa, K., Noma, M., Sugimachi, M., Ando, H., Nose, Y., Nakamura, M. Mechanical matching of the left ventricle with the arterial system in exercising dogs. Circ Res 71:481–489, 1992.PubMedCrossRefGoogle Scholar
  14. 14.
    Sunagawa, K., Yamada, A., Senda, Y., Kikuchi, Y., Nakamura, M., Shibahara, T., Nose, Y. Estimation of the hydromotive source pressure from ejecting beats of the left ventricle. IEEE BME-27:299–305, 1980.Google Scholar
  15. 15.
    Sunagawa, K., Sagawa, K. Models of ventricular contraction based on time-varying elastance. CRC Critical Rev Biomed Eng 7:193–228, 1982.Google Scholar
  16. 16.
    Takeuchi, M., Igarashi, Y., Tomimoto, S., Odake, M., Hayashi, T., Tsukamoto, T., Hata, K., Takaoka, H., Fukzaki, H. Single beat estimation of the slope of the end-systolic pressure-volume relation in the human left ventricle. Circulation 83:202–212, 1991.PubMedCrossRefGoogle Scholar
  17. 17.
    Sunagawa, K., Maughan, W.L., Burkhoff, D., Sagawa, K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol 245 (Heart Circ Physiol 14):H773–H780, 1983.PubMedGoogle Scholar
  18. 18.
    Sunagawa, K., Hayashida, K., Sugimachi, M., Noma, M., Ando, H., Tajimi, T., Tomoike, H., Nose, Y., Nakamura, M. Ventriculoarterial matching in exercising dogs. In: Sideman, S., Beyer, R. (ed) Analysis and simulation of the cardiac system-ischemia. CRC Press Boca Raton, pp 89–98, 1989.Google Scholar
  19. 19.
    Sunagawa, K., Sugimachi, M., Todaka, K., Nakamura, M. Ventricular matching with the arterial system in chronically instrumented dogs. In: Hori, M., Suga, H., Baan, J., Yellin, E.L. (ed) Cardiac mechanics and function in the normal and diseased heart. Springer Tokyo, pp 207–210, 1989.CrossRefGoogle Scholar
  20. 20.
    Sugimachi, M., Todaka, K., Sunagawa, K., Nakamura, M. Optimal afterload for the heart vs optimal heart for the afterload. Frontiers Med Biol Eng 2:217–221, 1990.Google Scholar
  21. 21.
    Suga, H. Total mechanical energy of a ventricle model and cardiac oxygen consumption. Am J Physiol 236 (Heart Circ Physiol 5):H498–H505, 1979.PubMedGoogle Scholar
  22. 22.
    Suga, H., Hayashi, T., Shirahata, M. Ventricular systolic pressure-volume area as predictor of cardiac oxygen consumption. Am J Physiol 240 (Heart Circ Physiol 9):H39–H44, 1981.PubMedGoogle Scholar
  23. 23.
    Suga, H., Yamamura, Y., Nozawa, T. Prospective prediction of O2 consumption from pressure volume area (PVA) in dog heart. Am J Physiol 252 (Heart Circ Physiol 21):H1258–H1268, 1987.PubMedGoogle Scholar
  24. 24.
    Kubota, T., Alexander J., Jr, Itaya, R., Todaka, K., Sugimachi, M., Sunagawa, K., Nose, Y., Takeshita, A. Dynamic effects of carotid sinus baroreflex on ventriculo-arterial studied in anesthetized dogs. Circ Res 70:1044–1053, 1992.PubMedCrossRefGoogle Scholar
  25. 25.
    Marmarelis, P.Z., Marmarelis, V.Z. Analysis of physiological system: The white noise approach. Plenum Press, New York, 1978.CrossRefGoogle Scholar
  26. 26.
    Marple, S.L. Digital spectral analysis with applications. Prentice-Hall, New Jersey, 1987.Google Scholar
  27. 27.
    Johansson, R. System modeling and identification. Prentice-Hall, New Jersey, 1993.Google Scholar
  28. 28.
    Asanoi, H., Sasayama, S., Kameyama, T. Ventriculoarterial in normal and failing heart in humans. Circ Res 65:483–493, 1989.PubMedCrossRefGoogle Scholar
  29. 29.
    Sasayama, S., Franklin, D., Ross, J., Jr. Hyperfunction with normal inotropic state of the hypertrophied left ventricle. Am J Physiol 232 (Heart Circ Physiol):H418–H422, 1977.PubMedGoogle Scholar
  30. 30.
    Raizner, A.E., Chahine, R.A., Ishimon, T., Audec, M. Clinical correlates of left ventricular cavity obliteration. Am J Cardiol 40:303–309, 1977.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Kenji Sunagawa
  • Masaru Sugimachi
  • Yasuhiro Ikeda
  • Osamu Kawaguchi
  • Toshiaki Shishido
  • Toru Kawada

There are no affiliations available

Personalised recommendations