Skip to main content

Efficiency of Ventricular-Arterial Coupling and Baroreflex Regulation of Blood Pressure

  • Chapter
Cardiac Energetics: From Emax to Pressure-Volume Area

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 177))

  • 46 Accesses

Abstract

The heart contracts incessantly over the lifetime. The average number of contractions for human beings exceeds 2.5 billion. Since each ejection requires a large amount of energy, the energy expenditure by the heart becomes enormous. Thus conceivable that, in response to changes in demands of the heart, the regulatory system adjusts ventricular contraction to maximize energy efficiency. Indeed, stroke power output of the normal excised feline left or right ventricle was maximum when the ventricle was loaded with normal arterial impedance (1–3). This was true in the open-chest cat (4–6). In the canine left ventricle, external work was expected to be nearly maximum under normal loading conditions (7,8), as was indeed the case (9–12). Although all these studies indicated that external work or mechanical efficiency was well optimized in conscious animals as well as in anesthetized animals, it was not known whether the optimization principle holds in animals under exercise stress, where the metabolic demand of the heart is greatly increased. Thus in chronically instrumented dogs, we investigated the effect of exercise on mechanical energy transmission from the left ventricle to the arterial system (13).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Piene, H., Sund, H. Flow and power output of right ventricle facing load with variable input impedance. Am J Physiol 237 (Heart Circ Physiol 6): H125–H130, 1979.

    PubMed  CAS  Google Scholar 

  2. Elzinga, G., Piene, H., Jong, J.P. Left and right ventricular pump function and consequences of having two pumps in one heart. A study on the isolated cat heart. Circ Res 46:564–574, 1980.

    Article  PubMed  CAS  Google Scholar 

  3. Piene, H., Sund, T. Does normal pulmonary impedance constitute the optimum load for the right ventricle? Am J Physiol 242:H154–H160, 1982.

    PubMed  CAS  Google Scholar 

  4. Van den Horn, G.J., Westerhof, N., Elzinga, G. Optimal power generation by the left ventricle. A study in the anesthetized open thorax cat. Circ Res 56: 252–261, 1985.

    Article  PubMed  Google Scholar 

  5. Van den Horn, G.J., Westerhof, N., Elzinga, G. Feline left ventricle does not always operate at optimum power output. Am J Physiol 250 (Heart Circ Physiol 19):H961–H967, 1986.

    PubMed  Google Scholar 

  6. Toorop, G.P., Gerardus, J., Van den Horn, G.J., Elzinga, G., Westerhof, N. Matching between feline left ventricle and arterial load: optimal power or efficiency. Am J Physiol 254 (Heart Circ Physiol 23):H279–H285, 1988.

    PubMed  CAS  Google Scholar 

  7. Burkhoff, D., Sagawa. K. Ventricular efficiency predicted by an analytical model. Am J Physiol 250 (Regulatory Integrative Comp Physiol 19): R1021–R1027, 1986.

    PubMed  CAS  Google Scholar 

  8. Tanaka, N., Yasumura, Y., Nozawa, T., Futaki, S., Uenishi, M., Hiramori, K., Suga, H. Optimal contractility and minimal oxygen consumption for constant external work of heart. Am J Physiol 254 (Regulatory Integrative Comp Physiol 23): R933– R943, 1988.

    PubMed  CAS  Google Scholar 

  9. Wilcken, D.E.L., Charlier, A.A., Hoffman, J.I.E., Guz, A. Effects of alterations in aortic impedance on the performance of the ventricles. Circ Res 14:283–293, 1964.

    Article  PubMed  CAS  Google Scholar 

  10. Sunagawa, K., Maughan, W.L., Sagawa, K. Optimal arterial resistance for the maximal stroke work studied in isolated canine left ventricle. Circ Res 56:586–595, 1985.

    Article  PubMed  CAS  Google Scholar 

  11. Suga, H., Igarashi, Y., Yamada, O., Goto, Y. Mechanical Efficiency of the left ventricle as a function of preload, afterload, and contractility. Heart and Vessel 1:3–8, 1985.

    Article  CAS  Google Scholar 

  12. Myhre, E.S.P., Johansen, A., Bjornstad, Piene, H. The effect of contractility and preload on matching between the canine left ventricle and afterload. Circulation 73:161–171, 1986.

    Article  PubMed  CAS  Google Scholar 

  13. Hayashida, K., Sunagawa, K., Noma, M., Sugimachi, M., Ando, H., Nose, Y., Nakamura, M. Mechanical matching of the left ventricle with the arterial system in exercising dogs. Circ Res 71:481–489, 1992.

    Article  PubMed  CAS  Google Scholar 

  14. Sunagawa, K., Yamada, A., Senda, Y., Kikuchi, Y., Nakamura, M., Shibahara, T., Nose, Y. Estimation of the hydromotive source pressure from ejecting beats of the left ventricle. IEEE BME-27:299–305, 1980.

    Google Scholar 

  15. Sunagawa, K., Sagawa, K. Models of ventricular contraction based on time-varying elastance. CRC Critical Rev Biomed Eng 7:193–228, 1982.

    CAS  Google Scholar 

  16. Takeuchi, M., Igarashi, Y., Tomimoto, S., Odake, M., Hayashi, T., Tsukamoto, T., Hata, K., Takaoka, H., Fukzaki, H. Single beat estimation of the slope of the end-systolic pressure-volume relation in the human left ventricle. Circulation 83:202–212, 1991.

    Article  PubMed  CAS  Google Scholar 

  17. Sunagawa, K., Maughan, W.L., Burkhoff, D., Sagawa, K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol 245 (Heart Circ Physiol 14):H773–H780, 1983.

    PubMed  CAS  Google Scholar 

  18. Sunagawa, K., Hayashida, K., Sugimachi, M., Noma, M., Ando, H., Tajimi, T., Tomoike, H., Nose, Y., Nakamura, M. Ventriculoarterial matching in exercising dogs. In: Sideman, S., Beyer, R. (ed) Analysis and simulation of the cardiac system-ischemia. CRC Press Boca Raton, pp 89–98, 1989.

    Google Scholar 

  19. Sunagawa, K., Sugimachi, M., Todaka, K., Nakamura, M. Ventricular matching with the arterial system in chronically instrumented dogs. In: Hori, M., Suga, H., Baan, J., Yellin, E.L. (ed) Cardiac mechanics and function in the normal and diseased heart. Springer Tokyo, pp 207–210, 1989.

    Chapter  Google Scholar 

  20. Sugimachi, M., Todaka, K., Sunagawa, K., Nakamura, M. Optimal afterload for the heart vs optimal heart for the afterload. Frontiers Med Biol Eng 2:217–221, 1990.

    CAS  Google Scholar 

  21. Suga, H. Total mechanical energy of a ventricle model and cardiac oxygen consumption. Am J Physiol 236 (Heart Circ Physiol 5):H498–H505, 1979.

    PubMed  CAS  Google Scholar 

  22. Suga, H., Hayashi, T., Shirahata, M. Ventricular systolic pressure-volume area as predictor of cardiac oxygen consumption. Am J Physiol 240 (Heart Circ Physiol 9):H39–H44, 1981.

    PubMed  CAS  Google Scholar 

  23. Suga, H., Yamamura, Y., Nozawa, T. Prospective prediction of O2 consumption from pressure volume area (PVA) in dog heart. Am J Physiol 252 (Heart Circ Physiol 21):H1258–H1268, 1987.

    PubMed  CAS  Google Scholar 

  24. Kubota, T., Alexander J., Jr, Itaya, R., Todaka, K., Sugimachi, M., Sunagawa, K., Nose, Y., Takeshita, A. Dynamic effects of carotid sinus baroreflex on ventriculo-arterial studied in anesthetized dogs. Circ Res 70:1044–1053, 1992.

    Article  PubMed  CAS  Google Scholar 

  25. Marmarelis, P.Z., Marmarelis, V.Z. Analysis of physiological system: The white noise approach. Plenum Press, New York, 1978.

    Book  Google Scholar 

  26. Marple, S.L. Digital spectral analysis with applications. Prentice-Hall, New Jersey, 1987.

    Google Scholar 

  27. Johansson, R. System modeling and identification. Prentice-Hall, New Jersey, 1993.

    Google Scholar 

  28. Asanoi, H., Sasayama, S., Kameyama, T. Ventriculoarterial in normal and failing heart in humans. Circ Res 65:483–493, 1989.

    Article  PubMed  CAS  Google Scholar 

  29. Sasayama, S., Franklin, D., Ross, J., Jr. Hyperfunction with normal inotropic state of the hypertrophied left ventricle. Am J Physiol 232 (Heart Circ Physiol):H418–H422, 1977.

    PubMed  CAS  Google Scholar 

  30. Raizner, A.E., Chahine, R.A., Ishimon, T., Audec, M. Clinical correlates of left ventricular cavity obliteration. Am J Cardiol 40:303–309, 1977.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sunagawa, K., Sugimachi, M., Ikeda, Y., Kawaguchi, O., Shishido, T., Kawada, T. (1995). Efficiency of Ventricular-Arterial Coupling and Baroreflex Regulation of Blood Pressure. In: LeWinter, M.M., Suga, H., Watkins, M.W. (eds) Cardiac Energetics: From Emax to Pressure-Volume Area. Developments in Cardiovascular Medicine, vol 177. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2021-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2021-4_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5836-7

  • Online ISBN: 978-1-4615-2021-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics