The Current Status of Bone Marrow Transplantation and Gene Therapy in the Management of the Haemoglobinopathies

  • J. F. Apperley
  • I. A. G. Roberts
Part of the Developments in Hematology and Immunology book series (DIHI, volume 30)

Abstract

Since the first successful bone marrow transplants (BMT) were reported [1–3], clinicians have been aware of their potential for the treatment of the haemoglobinopathies. To date the procedural risks of BMT have precluded its widespread use for thalassaemiaand sickle cell disease. However as the risks of BMT have decreased due to a combination of increasing experience and improved techniques, it has become a viable alternative to medical treatment in selected cases. The decision to advocate transplant remains difficult, but the information now available regarding the outcome of BMT has enabled us to identify suitable patient groups.

Keywords

Recombination Adenosine Expense Cyclophosphamide Ferritin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bach FH, Albertini RJ, Anderson JL, Joo P, Bortin MM. Bone marrow transplantation in a patient with the Wiskott-Aldrich syndrome. Lancet 1968;ii:1364–66.CrossRefGoogle Scholar
  2. 2.
    Gatti RA, Meuwissen HJ, Allen HD, Hong R, Good RA. Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet 1968;ii:1366–69.CrossRefGoogle Scholar
  3. 3.
    Koning J de, van Bekkum DW, Dicke KA, Dooren LJ, van Rood JJ, Radl J. Transplantation of bone marrow cells and fetal thymus in an infant with lymphopenic immunological deficiency. Lancet 1969;i:1223–27.CrossRefGoogle Scholar
  4. 4.
    Thomas ED, Buckner CD, Sanders JE. Marrow transplantation for thalassemia. Lancet; ii:227–29.Google Scholar
  5. 5.
    Borgna-Pignatti C, Zurlo MG, DeStefano P, et al. Survival in thalassemia with conventional treatment. In: Buckner CD, Gale RP, Lucarelli G (eds). Advances and controversies in thalassemia therapy. New York: Alan R. Liss 1989:27–34.Google Scholar
  6. 6.
    Lucarelli G, Polchi P, Izzi T, et al. Allogeneic marrow transplantation for thalassemia. Exp Hematol 1984;12:676–81.PubMedGoogle Scholar
  7. 7.
    Lucarelli G, Polchi P, Galimberti M, et al. Marrow transplantation for thalassaemia following busolphan and cyclophosphamide. Lancet 1995;i;1355–57.Google Scholar
  8. 8.
    Lucarelli G, Weatherall DJ. For debate: Bone marrow transplantation for severe thalassemia. Brit J Haematol 1991;78:300–3.CrossRefGoogle Scholar
  9. 9.
    Lucarelli G, Galimberti M, Polchi P, et al. Bone marrow transplantation in patients with thalassemia. N Engl J Med 1990;322:417–21.PubMedCrossRefGoogle Scholar
  10. 10.
    Angelucci E, Polizzi V, Lucarelli G, Muretto P. Liver iron kinetics in thalassemic patients after bone marrow transplantation. In: Buckner CD, Gale RP, Lucarelli G (eds). Advances and controversies in thalassemia therapy. New York: Alan R. Liss 1989:291–98.Google Scholar
  11. 11.
    Galimberti M, de Sanctis V, Lucarelli G, et al. Endocrine function after bone marrow transplantation for thalassemia. Bone Marrow Transpl 1991a;7(suppl 3):74.Google Scholar
  12. 12.
    De Sanctis V, Galimberti M, Lucarelli G, et al. Gonadal function after bone marrow transplantation for thalassemia. Arch Dis Child 1991;66:517–20.PubMedCrossRefGoogle Scholar
  13. 13.
    Galimberti M, Lucarelli G, Polchi P, et al. HLA-mismatched bone marrow transplantation for thalassemia. Bone Marrow Transpl 1991a;7(suppl 3):98–100.Google Scholar
  14. 14.
    Johnson FL, Look AT, Gockerman J, et al. Bone marrow transplantation in a patient with sickle cell anaemia. N Engl J Med 1984;311:780–83.PubMedCrossRefGoogle Scholar
  15. 15.
    Vermylen CH, Fernandez Robles E, Ninane J, Cornu G. Bone marrow transplantation in five children with sickle cell anaemia. Lancet 1989;i:1427–28.Google Scholar
  16. 16.
    Vermylen CH, Cornu G. Bone marrow transplantation in sickle cell disease: The Belgium experience. Bone Marrow Transpl 1992;12(suppl 1):116–17.Google Scholar
  17. 17.
    Bernaudin F, Souillet G, Vannier JP, et al. Bone marrow transplantation (BMT) in 14 children with severe sickle cell disease: The French experience. Bone Marrow Transpl 1992;12(suppl 1):118–21.Google Scholar
  18. 18.
    Powards D, Chan LS, Schroeder WA. The variable expression of sickle cell disease is genetically determined. Sem Hematol 1990;27:360–76.Google Scholar
  19. 19.
    Apperley JF. Bone marrow transplant for the haemoglobinopathies: Past, present and future. In: Higgs DR, Weatherall DJ (eds). The haemoglobinopathies. Baillière’s Clinical Haematology. London: Baillière Tindall 1993;6:299–325Google Scholar
  20. 20.
    Smithies O, Gregg RO, Boggs, Koralewski MA, Kuherlapati RB. Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination. Nature. 1985; 317:230–34.PubMedCrossRefGoogle Scholar
  21. 21.
    Thomas KR, Capecchi MR. Site directed mutagenesis by genes targeting in mouse embryo-derived stem cells. Cell 1987;51:503–12.PubMedCrossRefGoogle Scholar
  22. 22.
    Harrison DE, Astle CM, Lerner C. Number and continuous proliferative patterns of transplanted primitive immunohematopoietic stem cells. Proc Natl Acad Sci USA 1988;85:822–26.PubMedCrossRefGoogle Scholar
  23. 23.
    Markowitz D, Goff S, Bank A. A safe packaging line for gene transfer: Separating viral genes on two different plasmids. J Virol 1988;62:1120–24.PubMedGoogle Scholar
  24. 24.
    Danos O, Mulligan RC. Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host ranges. Proc Natl Acad Sci USA 1988;85:6460–64.PubMedCrossRefGoogle Scholar
  25. 25.
    Joyner A, Keller G, Phillips RA, Bernstein A. Retroviruse transfer of a bacterial gene into mouse hematopoietic cells. Nature 1983;305:556–58.PubMedCrossRefGoogle Scholar
  26. 26.
    Williams DA, Lemischka IR, Nathan DG, Mulligan RC. Introduction of new genetic material into pluripotent stem cells of the mouse. Nature 1984;310:476–80.PubMedCrossRefGoogle Scholar
  27. 27.
    Apperley JF, Luskey BD, Williams DA. Retroviral gene transfer of human adenosine deaminase in murine hemopoietic cells: Effect of selectable marker sequences on long-term expression. Blood 1991;78:310–17.PubMedGoogle Scholar
  28. 28.
    Cone RD, Weber-Benarous A, Baorto D, Mulligan RC. Regulated expression of a complete human β-globin gene encoded by a transmissableretrovirus vector. Mol Cell Biol 1987;7:887–97.PubMedGoogle Scholar
  29. 29.
    Lerner N, Brigham S, Goff S, Bank A. Human β-globin gene expression after gene transfer using retroviral vectors. DNA 1987;6:573–82.PubMedCrossRefGoogle Scholar
  30. 30.
    Bender MA, Miller AD, Gelinas RE. Expression of the human β-globin gene after retroviral transfer into murine erythroleukemia cells and human BFU-E cells. Mol Cell Biol 1988;8:1725–35.PubMedGoogle Scholar
  31. 31.
    Karlsson S, Papayannopoulou T, Schweiger SC, Stamatoyannopoulos G, Nienhuis A. Retroviral-mediated transfer of genomic globin genes leads to regulated production of RNA and protein. Proc Natl Acad Sci USA 1987;84: 2411–15.PubMedCrossRefGoogle Scholar
  32. 32.
    Dzierzak EA, Papayannopoulou T, Mulligan RC. Lineage specific expression of a human β-globin gene in murine bone marrow transplant recipients reconstituted with retrovirus-transduced stem cells. Nature 1988;331:3541–44.CrossRefGoogle Scholar
  33. 33.
    Bender MA, Gelinas RE, Miller AD. A majority of mice show long-term expression of the β-globin gene after retroviral transfer into haematopoietic stem cells. Mol Cell Biol 1989;9:1426–36.PubMedGoogle Scholar
  34. 34.
    Grosveld F, Blom van Assendfeldt G, Greaves DR, Kollias G. Position-indepedent high-level expression of the human β-globin gene in transgenic mice. Cell 1987;51:975–85.PubMedCrossRefGoogle Scholar
  35. 35.
    Higgs DR, Wood WG, Jarman AP, et al. A major positive regulatory region far upstream of the human α-globin gene locus. Genes Devel 1990;4:1588–1601.PubMedCrossRefGoogle Scholar
  36. 36.
    Novak U, Harris EAS, Forrester W, Groudine M, Grelin R. High-level β-globin expression after retroviral transfer of locus activation region-containing human β-globin gene derivatives into murine erythroleukaemia cells. Proc Natl Acad Sci USA 1990; 87:3386–90.PubMedCrossRefGoogle Scholar
  37. 37.
    Chang JC, Liu D, Kan YW. A 36-base-pair core sequence of locus control region enhances retrovirally transferred human β-globin gene expression. Proc Natl Acad Sci USA 1992;89:3107–10.PubMedCrossRefGoogle Scholar
  38. 38.
    Plavec I, Papayannopoulou T, Maury C, Meyer F. A human β-globin gene fused to the human β-globin gene locus control region is expressed at high levels in erythroid cells of mice engrafted with retrovirus-transduced hematopoietic stem cells. Blood 1993;81:1384–92.PubMedGoogle Scholar
  39. 39.
    Walsh CE, Lieu JM, Miller JL, Nienhuis AW, Samulski RJ. Gene therapy for human haemoglobinopathies. Proc Soc Exp Biol Med 1993;204:289–300.PubMedGoogle Scholar
  40. 40.
    Cheung A, Hoggan MD, Hauswirth WW, Berns KI. Integration of the adeno-associated virus genome into latently infected Detroit-6 cells. J Virol 1980;33:739–48.PubMedGoogle Scholar
  41. 41.
    Smiley JR, Smibert C, Everett RD. Expression of a cellular gene cloned in herpes simplex virus: Rabbit β-globin is regulated as an early viral gene in infected fibroblasts. J Virol 1987;61:2368–77.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • J. F. Apperley
  • I. A. G. Roberts

There are no affiliations available

Personalised recommendations