Advertisement

Graft Versus Leukemia in Humans

  • Anna Butturini
  • Robert Peter Gale
Part of the Cancer Treatment and Research book series (CTAR, volume 76)

Abstract

The notion of an antileukemia effect of allogeneic bone marrow transplants distinct from the high-dose pretransplant drugs and radiation given derives from experiments in mice with leukemia [1]. Recipients of allogeneic grafts have fewer relapses than recipients of syngeneic grafts given the same pretransplant chemotherapy with or without radiation. This antileukemia effect is mediated by allogeneic immune cells and is termed graft versus leukemia (GVL) [2]. In most animal models, GVL is associated with graft-versus-host disease (GVHD); exceptions are gnotobiotic mice and mice given total lymphoid radiation, in whom GVL may occur without GVHD [3].

Keywords

Acute Lymphoblastic Leukemia Chronic Myeloid Leukemia Chronic Myelogenous Leukemia Acute Myelogenous Leukemia Chronic GVHD 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barnes DWH, Crop MJ, Loutit LF, Neal FE: Treatment of murine leukemia with x-rays and homologous bone marrow. Br Med J 2:626–627, 1956.PubMedCrossRefGoogle Scholar
  2. 2.
    Okunewick JP, Meredith RP: Graft-Versus-Leukemia in Man and Animal Models. Boca Raton, FL: CRC Press, 1989.Google Scholar
  3. 3.
    Bortin MM, Truitt RL, Rimm AA, Bach FH: Graft versus leukemia activity induced by alloimmunization without augmentation of graft versus host activity. Nature 281:490–491, 1979.PubMedCrossRefGoogle Scholar
  4. 4.
    Fefer A, Cheever MA, Thomas ED, Appelbaum FR, Buckner CD, Clift RA, Glucksberg H, Greenberg PD, Johnson FL, Kaplan HG, Sanders JE, Storb R, Weiden PL: Bone marrow transplantation for refractory acute leukemia in 34 patients with identical twins. Blood 57:421–430, 1981.PubMedGoogle Scholar
  5. 5.
    Gale RP, Champlin RE: How does bone marrow transplant cure leukemia? Lancet 1:28, 1984.Google Scholar
  6. 6.
    Marmont AM, Horowitz MM, Gale RP, et al.: T cell depletion of HLA identical transplants in leukemia. Blood 78:2120–2130, 1991.PubMedGoogle Scholar
  7. 7.
    Sullivan KM, Weiden PL, Storb R, Witherspoon RP, Fefer A, Fisher L, Buckner CD, Anasetti C, Appelbaum FR, Badger C: Influence of acute and chronic graft versus host disease on relapse and survival after bone marrow transplantation for HLA identicalsiblings as treatment of acute and chronic leukemia. Blood 73:1720–1728, 1989.PubMedGoogle Scholar
  8. 8.
    Barrett AJ, Horowitz MM, Gale RP, Biggs JC, Camitta BM, Dick KA, Gluckman E, Good RA, Herzig RH, Lee MB: Marrow transplantation for acute lymphoblastic leukemia: Factors affecting relapse and survival. Blood 74:862–871, 1989.PubMedGoogle Scholar
  9. 9.
    Santos GW: Marrow transplantation in acute non lymphocytic leukemia. Blood 74:901–908, 1989.PubMedGoogle Scholar
  10. 10.
    Storb R, Pepe M, Deeg HJ, Anasetti C, Appelbaum FR, Bensinger W, Buckner CD, Clift RA, Doney K, Hansen J, Martin P, Pettinger M, Sanders JE, Singer J, Stewart P, Sullivan KM, Thomas ED, Witherspoon RP: Long term follow up of a controlled trial comparing a combination of methotrexate plus cyclosporine with cyclosporine alone for prophylaxis of graft versus host disease in patients administered HLA identical marrow graft for leukemia. Blood 80:560–561, 1992.PubMedGoogle Scholar
  11. 11.
    Bacigalupo A, Van Lint MT, Occhini D, et al.: Increased risk of leukemia relapse with high dose cyclosporine A after allogeneic marrow transplantation for acute leukemia. Blood 77:1423–1428, 1991.PubMedGoogle Scholar
  12. 12.
    Ringden O, Horowitz MM, Sondel P, Gale RP, Biggs JC, Champlin RE, Deeg HJ, Dicke K, Masaoka T, Powies RL, Rimm AA, Rozman C, Sobocinski KA, Speck B, Zwaan FE, Bortin MM: Methotrexate, cyclosporine or both to prevent graft versus host disease after HLA identical sibling bone marrow transplant for early leukemia. Blood 81:1094–1101, 1993.PubMedGoogle Scholar
  13. 13.
    Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb C, Speck B: Graft-versus-leukemia reaction after bone marrow transplantation. Blood 75:555–562, 1990.PubMedGoogle Scholar
  14. 14.
    Butturini A, Gale RP: The role of T cells in preventing relapse in chronic myelogenous leukemia. Bone Marrow Transplant 2:351–354, 1987.PubMedGoogle Scholar
  15. 15.
    Gale RP, Ash RC, Champlin RE, Goldman JM, Horowitz MM, Rimm AA, Ringden O, Stone JA, Bortin MM: Bone marrow transplants for leukemia from genetically-identical twin donors. Ann Intern Med 120:646–652, 1994.PubMedGoogle Scholar
  16. 16.
    Hercend T, Takvorian R, Nowill A, Tantravahi R, Moingeon P, Anderson KC, Murray C, Bohuon C, Ythier A, Ritz J: Characterization of natural killer cells with antileukemia activity following allogeneic bone marrow transplantation. Blood 67:722–728, 1986.PubMedGoogle Scholar
  17. 17.
    Hauch M, Gazzola MV, Small T, Bordignon C, Barnett L, Cunningham I, Castro-Malaspinia H, O’Reilly RJ, Keever CA: Antileukemia potential of interleukin-2 activated natural killer after bone marrow transplantation for chronic myelogenous leukemia. Blood 75:2250–2262, 1990.PubMedGoogle Scholar
  18. 18.
    MacKinnon S, Hows JM, Goldman JM: Induction of in vitro antileukemia activity following bone marrow transplantation for chronic myeloid leukemia. Blood 76:2037–2045, 1990.PubMedGoogle Scholar
  19. 19.
    Butturini A, Bonilauri E, Izzi GC: Therapy of advanced acute myeloblastic leukemia with cytarabine and interleukin-2. Leuk Res 15:759–763, 1991.Google Scholar
  20. 20.
    Van Lochern E, De Gast B, Goulmy E: In vitro separation of host specific graft versus host and graft versus leukemia cytotoxic T cell activities. Bone Marrow Transplant 10:181–183, 1991.Google Scholar
  21. 21.
    Faber FM, Van Luxemburg-Heijs SAP, Willenze R, Folkenburg JHF: Generation of leukemia reactive cytotoxyc T lymphocyte clones from the HLA identical bone marrow donor of a patient with leukemia. J Exp Med 76:1283–1289, 1992.CrossRefGoogle Scholar
  22. 22.
    Horowitz MM, Messerer D, Holzer D, et al.: Chemotherapy compared with bone marrow transplantation for adults with acute lymphoblastic leukemia in first remission. Ann Intern Med 115:13–18, 1991.PubMedGoogle Scholar
  23. 23.
    Barrett AJ, Pollock B, Horowitz MM, Zhang MJ, Gale RP: Chemotherapy vs. bone marrow transplants for children with acute lymphoblastic leukemia in second remission. Blood 82(Suppl 1):194, 1993.Google Scholar
  24. 24.
    Butturini A, Gale RP: How can we cure leukemia. Br J Haematol 72:479–485, 1988.CrossRefGoogle Scholar
  25. 25.
    Hagenbeck A, Arkesteyn GJA, Ying Y, Martens ACM: Minimal residual disease in acute leukemia. Exp Hematol 18:718, 1990.Google Scholar
  26. 26.
    Nimer SD, Giorgi J, Gajewski JL, et al.: Selective depletion of CD8+ cells for prevention of graft versus host disease after bone marrow transplantation. Transplantation 57:82–87, 1994.PubMedCrossRefGoogle Scholar
  27. 27.
    Van Els CA, Bakker A, Zwinderman AH, Zwaan FE, van Rood JJ, Goulmy E: Effector mechanisms in graft versus host disease in response to minor histocompatibility antigens II. Evidence of a possible involvement of proliferative T cells. Transplantation 50:62–66, 1990.Google Scholar
  28. 28.
    Van Els CACM, Bakker A, Zwinderman AH, Zwaan FE, Van Rood JJ, Goulmy E: Effector mechanisms in graft versus host disease in response to minor histocompatibility antigens II. Evidence of a possible involvement of proliferative T cells. Transplantation 60:67–71, 1990.CrossRefGoogle Scholar
  29. 29.
    Goulmy E: Minor histocompatibility antigens in man and their role in transplantation. Transpl Rev 2:29–54, 1988.CrossRefGoogle Scholar
  30. 30.
    Perreault C, Deary F, Brochu S, Gyger M, Gelanger R, Roy D: Minor histocompatibility antigens. Blood 76:1269–1280, 1990.PubMedGoogle Scholar
  31. 31.
    Martin PJ: Increased disparity for minor histocompatibility antigens as a potential cause of increased GVHD risk in bone marrow transplantation for unrelated donor compared with related donors. Bone Marrow Transplant 8:217–222, 1991.PubMedGoogle Scholar
  32. 32.
    Marrack P, Kappler J: T cells can distinguish between allogeneic major histocompatibility complex products on different cell types. Nature 322:840–843, 1988.CrossRefGoogle Scholar
  33. 33.
    Heath WR, Hurd ME, Carbone FR, Sherman LA: Peptide-dependent recognition of H-2kb by alloreactive cytotoxic T lymphocytes. Nature 341:749–752, 1989.PubMedCrossRefGoogle Scholar
  34. 34.
    Nepom GT: The effects of variations in human immune response genes. N Engl J Med 321:751–752, 1989.PubMedCrossRefGoogle Scholar
  35. 35.
    Kwak LW, Campbell MJ, Czerwinski DK, Hart S, Miller RA, Levy R: Induction of immune responses in patients with B cell lymphoma against surface immunoglobulin idiotype expressed by their tumors. N Engl J Med 327:1209–1215, 1992.PubMedCrossRefGoogle Scholar
  36. 36.
    Cline MJ: Mechanisms of disease: The molecular basis of leukemia. N Engl J Med 330:328–336, 1994.PubMedCrossRefGoogle Scholar
  37. 37.
    Margulias DH: Naked or peptide-clothed MHC. Nature 342:124–125, 1989.CrossRefGoogle Scholar
  38. 38.
    Eisenlohr LC, Bacik I, Bennink JR, Bernstein K, Yewdell JW: Expression of a membrane protease enhances presentation of endogenous antigenes to MHC class-I-restricted T lymphocytes. Cell 71:963–972, 1993.CrossRefGoogle Scholar
  39. 39.
    Gambacorti-Passerini C, Grignani F, Arienti F, Pandolfi PP, Pelicci P, Parmiani G: Human CD4 lymphocytes specifically recognize a peptide representing the fusion region of the hybrid protein PMLL/RARa present in acute promyelocytic cells. Blood 81:1369–1375, 1993.PubMedGoogle Scholar
  40. 40.
    Chen W, Peace DJ, Rivira DK, You SG, Chever MA: T cell immunity to the joining region of p210BCR-ABL protein. Proc Natl Acad Sci USA 89:1468–1472, 1992.PubMedCrossRefGoogle Scholar
  41. 41.
    Jung S, Schluesener HJ: Human T lymphocytes recognize a peptide of single point mutated, oncogenic ras protein. J Exp Med 173:273–276, 1991.PubMedCrossRefGoogle Scholar
  42. 42.
    Johnson PW, Trimble WS, Hozumi N, Roder JC: Enhanced lytic susceptibility of Ha-ras transformant after oncogene induction is specific to activated NK cells. J Immunol 138: 3996–4003, 1987.PubMedGoogle Scholar
  43. 43.
    Talpaz M, Kantarjian HK, Kurzrock R, Trujillo J, Guttermann J: Interferon alpha produces sustained cytogenetic responses in chronic myelogenous leukemia Philadelphia chromosome positive patients. Ann Intern Med 114:532–538, 1991.PubMedGoogle Scholar
  44. 44.
    Italian Cooperative Study Group on Chronic Myeloid Leukemia: Interferon alfa 2b as compared with conventional chemotherapy for the treatment of chronic myeloid leukemia. N Engl J Med 330:820–825, 1994.CrossRefGoogle Scholar
  45. 45.
    Jimenez C, Ribeira JM, Abad E, et al.: Increased serum tumor necrosis factor during transient remission in acute leukemia. Lancet 341:1600, 1993.CrossRefGoogle Scholar
  46. 46.
    Foon KA: Biological response modifiers: The new immunotherapy. Cancer Res 49: 1621–1639, 1989.PubMedGoogle Scholar
  47. 47.
    Butturini A, Gale RP: Clinical trials of myeloid growth factors. In Goldstein A, Garaci E (eds): Combination therapies 2: New and merging uses of biologic response modifiers in cancer and infectious diseases. New York: Plenum Press, 1993, pp 179–187.Google Scholar
  48. 48.
    Cohen J: Cytokines as mediators of graft versus host disease. Bone Marrow Transplant 3:193–197, 1988.PubMedGoogle Scholar
  49. 49.
    Holler E, Kolb HJ, Moller A, Kempeni J, Liesenfeld S, Pechumer H, Lehmacher W, Ruckdeschel G, Gleixner B, Riednes C, Ledderose G, Brehm G, Mittermuller J, Wilmanns W: Increased serum levels of tumor necrosis factor alpha precede major complications of bone marrow transplantation. Blood 75:1011–1016, 1990.PubMedGoogle Scholar
  50. 50.
    Cleveland MG, Lane G, Klimpel GR: Enhanced interferon a/b (IFN a/b) and defective IFNr production in chronic graft versus host disease: A potential mechanism for immuno-suppression. Cell Immunol 110:120–130, 1987.PubMedCrossRefGoogle Scholar
  51. 51.
    Duncombe AS, Meager A, Prentice HG: y-Interferon and tumor necrosis factor production after bone marrow transplantation is augmented by exposure to marrow fibroblasts infected with cytomegalovirus. Blood 76:1046–1053, 1990.PubMedGoogle Scholar
  52. 52.
    Gressler VH, Weinkanf RE, Franklin WA, Golomb HM: Modulation of the expression of major histocompatibility antigens on splenic hairy cells. Differential effect upon in vitro treatment with a 2b interferon, y interferon and interleukin 2. Blood 72:1048–1053, 1988.Google Scholar
  53. 53.
    Radford JE, Chen E, Hromas R, Ginder CD: Cell-type specificity of interferon gamma mediated HLA class I gene transcription in human hematopoietic tumor cells. Blood 77:2008–2015, 1991.PubMedGoogle Scholar
  54. 54.
    Galvani DW: Why does a y interferon work in chronic granulocytic leukemia? Leuk Lymphoma 1:175–178, 1990.Google Scholar
  55. 55.
    Chen MJ, Holskinn B, Strikler J, et al.: Induction of EIA oncogene expression of cellular susceptibility to lysis by TNF. Nature 330:581–583, 1987.PubMedCrossRefGoogle Scholar
  56. 56.
    Pichert G, Ritz J: Clinical significance of the bcr-abl gene rearrangement detected by the polymerase chain reaction after allogeneic bone marrow transplantation in chronic myelogenous leukemia. Leuk Lymphoma 10:1–8, 1993.PubMedCrossRefGoogle Scholar
  57. 57.
    Lian T, Henn T, Gaiger A, Kalhs P, Gadner H: Early detection of relapse after bone marrow transplantation in patients in chronic myelogenous leukemia. Lancet 341:275–276, 1993.CrossRefGoogle Scholar
  58. 58.
    Sullivan KM, Deeg JH, Sanders J, Klosterman A, Amos D, Shulman H, Sale G, Martin P, Witherspoon R, Appelbaum FR: Hyeracute graft-versus-host disease in patients not given immunosuppression after allogeneic bone marrow transplantation. Blood 67:1172–1175, 1986.PubMedGoogle Scholar
  59. 59.
    Sullivan KM, Storb R, Buckner CD, Fefer A, Fisher L, Weiden PL, Witherspoon RP, Appelbaum FR, Bnaji M, Hansen J: Graft-versus-host disease as adoptive immunotherapy in patients with advanced hematological neoplasms. N Engl J Med 320:828–834, 1989.PubMedCrossRefGoogle Scholar
  60. 60.
    Gratwohl A, Tichelli A, Wursch H, et al.: Irradiated donor buffy coat following T cell depleted bone marrow transplants. Bone Marrow Transplant 3:577–582, 1988.PubMedGoogle Scholar
  61. 61.
    Slavin S, Weiss L, Ackerstein A, Vourka-Karussis U, Morecki S, Or R, Nagler A, Kapelushnik J, Delukina M, Drakos P, et al.: Prevention and treatment of relapse by bone marrow transplantation. Bone Marrow Transplant 12(Suppl 3):54–56, 1993.Google Scholar
  62. 62.
    Odom LF, August CS, Githens JH, Humbert JR, Morse H, Peakman D, Sharma B, Rusnak SL, Johnson FB: Remission of relapsed leukemia during a ‘graft versus leukemia’ reaction in man? Lancet 2:537–540, 1978.Google Scholar
  63. 63.
    Sullivan KM, Shulman H: Cyclosporine and long-term stable hematopoietic chimerism following marrow transplantation for acute lymphoblastic leukemia: A case report with in vitro marrow culture studies. Blood 62:869–872, 1983.Google Scholar
  64. 64.
    Higano CS, Brixley M, Bryant E, Durnam DM, Doney K, Sullivan KM, Singer JW: Durable complete remission of acute non lymphocytic leukemia associated with discontinuation of immune suppression following relapse after allogeneic bone marrow transplantation. A case report of a probable graft versus leukemia effect. Transplantation 50:175–177, 1990.Google Scholar
  65. 65.
    Frassoni F, Sessarego M, Bacigalupo A, Strada P, Repetto M, Miceli S, Occhini D, Defferrari R, Marmont A: Competition between recipient and donor cells after bone marow transplantation for chronic myelogenous leukemia. Br J Haematol 69:471–475, 1988.PubMedCrossRefGoogle Scholar
  66. 66.
    Kolb HJ, Mittermuller J, Clemm C, Holler E, Ledderose G, Brehm G, Heim M, Wilmanns W: Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 76:2462–2465, 1990.PubMedGoogle Scholar
  67. 67.
    Cullis JO, Jiang YZ, Schwerer AP, Hughes TP, Barrett AJ, Goldman JM: Donor lymphocyte infusions for chronic myeloid leukemia in relapse after allogeneic bone marrow transplantation. Blood 79:1379–1381, 1992.PubMedGoogle Scholar
  68. 68.
    Frassoni F, Fagioli F, Sessarego M, et al.: The effect of donor leukocyte infusion in patients with leukemia following allogeneic bone marrow transplantation. Exp Hematol 20:712, 1992.Google Scholar
  69. 69.
    Porter D, Roth M, McGarigle C, Ferrara J, Antin J: Induction of graft versus host disease as immunotherapy for relapsed chronic myeloid leukemia. N Engl J Med 330: 100–106, 1994.PubMedCrossRefGoogle Scholar
  70. 70.
    Helg C, Roux E, Beris P, et al.: Adoptive immunotherapy for recurrent CML after BMT. Bone Marrow Transplant 12:125–129, 1993.PubMedGoogle Scholar
  71. 71.
    Bar BMAM, Schattenberg A, Mensink EJBM, et al.: Donor leukocyte infusion for chronic myeloid leukemia relapsed after allogeneic bone marrow transplantation. J Clin Oncol 11:513–519, 1993.PubMedGoogle Scholar
  72. 72.
    Drobyski WR, Keever CA, Roth MS, et al.: Salvage immunotherapy using donor leukocyte infusions as treatment for relapsed chronic myelogenous leukemia after allogeneic marrow transplantation: Efficacy and toxicity of a defined T cell dose. Blood 82:2310–2318, 1993.PubMedGoogle Scholar
  73. 73.
    Gale RP, Horowitz MM, Butturini A, Barrett AJ, Kolb H: What determine who devilops graft versus host disease: The graft or the host (or both)? Bone Marrow Transplant 10:99–101, 1992.PubMedGoogle Scholar
  74. 74.
    Blaise D, Olive D, Stoppa AM, Viens P, Pourreau C, Lopez G, Attal M, Jasmin C, Monges G, Mawas G: Hematologic and immunologie effects of the systemic administration of recombinant interleukin 2 after autologous bone marrow transplantation. Blood 76:1092–1097, 1990.PubMedGoogle Scholar
  75. 75.
    Klingemann HG, Grigg AP, Wilkie-Boyed K, et al.: Treatment with recombinant inter-feron γ-2b early after bone marrow transplantation in patients at high risk of relapse. Blood 78:3306–3311, 1991.PubMedGoogle Scholar
  76. 76.
    Verdonck LF, van Hengten HG, Giltay J, Franks CR: Amplification of the graft versus leukemia in man by interleukin-2. Transplantation 51:1120–1123, 1991.Google Scholar
  77. 77.
    Soiffer RJ, Murray C, Cochran K, et al.: Clinical and immunologie effects of prolonged infusion of low dose recombinant interleukin 2 after autologous and T cell depleted allogeneic bone marrow transplantation. Blood 79:517–519, 1992.PubMedGoogle Scholar
  78. 78.
    Giralt S, Escudier S, Kantarjian H, et al.: Preliminary results of treatment with filgrastim for relapse of leukemia and myelodysplasia after allogeneic bone marrow transplantation. N Engl J Med 329:757–761, 1993.PubMedCrossRefGoogle Scholar
  79. 79.
    Arcese W, Mauro FR, Alimena G, LoCoco F, DeCuia MR, Screnci M, Lori AP, Montefusco E, Mandelli F: Interferon therapy for Ph1 positive CML patients relapsing after T cell depleted allogeneic bone marrow transplantation. Bone Marrow Transplant 5:309–315, 1990.PubMedGoogle Scholar
  80. 80.
    Higano CS, Raskin WH, Singer JW: Use of a interferon for the treatment of relapse of chronic myelogenous leukemia in chronic phase after allogeneic bone marrow transplantation. Blood 80:1437–1442, 1992.PubMedGoogle Scholar
  81. 81.
    Slavin S, Ackerstein A, Weiss L, Nagler A, Or R, Naparstok P: Induction of tumor dormancy in BALB/c mice against nonimmunogenic B-cell leukemia. In Stewart THM, Wheelock EP (eds): Cellular Immune Mechanisms and Tumor Domancy. Boca Raton, FL: CRC Press, 1992, pp 99–110.Google Scholar
  82. 82.
    Kedar E, Klein E: Cancer Immunotherapy. Why clinical trials are discouraging. Can they be improved? Adv Cancer Res 59:245–322, 1992.Google Scholar
  83. 83.
    Leventhal EB, Halterman RH, Rosenberg EB, Herberman RB: Immune reactivity of leukemia patients to autologous blast cells. Cancer Res 32:1820–1825, 1972.PubMedGoogle Scholar
  84. 84.
    Yssel H, Spits H, de Vries JE: A cloned human T cell line cytotoxic for autologous and allogeneic B lymphoma cells. J Exp Med 160:239–254, 1984.PubMedCrossRefGoogle Scholar
  85. 85.
    Bensussan A, Lagabrielle JF, Degos L: TCR y/8 bearing lymphocyte clones with lympho-kine-activated killer activity against autologous leukemia cells. Blood 73:2077–2080, 1989.PubMedGoogle Scholar
  86. 86.
    Alder A, Albo V, Blatt J, Whiteside TL, Herberman RB: Interleukin-2 induction of lymphokine-activiated killer (LAK) activity in the peripheral blood and bone marrow of acute leukemia patients. II. Feasibility of LAK generation in children with active disease in remission. Blood 74:1690–1697, 1989.Google Scholar
  87. 87.
    Fisch P, Weil-Hillman G, Upperkamp M, Hank JA, Chen BP, Sosman JA, Bridges A, Colamonici OR, Sondel PM: Antigen-spectific recognition of autologous leukemia cells and allogeneic class I MHC antigens by IL-2 activated cytotoxic T cells from a patient with acute T cell leukemia. Blood 74:343–353, 1989.PubMedGoogle Scholar
  88. 88.
    Zhou M, Findley HW, Davis R, Ragab AH: Assay of lymphokine-activated killer activity generated from bone marrow cells of children with acute lymphoblastic leukemia. Blood 75:160–165, 1990.PubMedGoogle Scholar
  89. 89.
    Verfaule C, Kay N, McGlave P: Diminished A-LAK cytotoxity and proliferation accompany disease progression in chronic myelogenous leukemia. Blood 76:401–408, 1990.Google Scholar
  90. 90.
    Butturini A, Gale RP: Relationship between clonality and transformation in acute leukemia. Leuk Res 15:1–7, 1991.PubMedCrossRefGoogle Scholar
  91. 91.
    Gottlieb DJ, Brenner MK, Heslop HE, Bianchi AC, Bello-Fernandez C, Mehta AB, Newland AC, Galazka AR, Scott EM, Hoffband AV: A phase I clinical trial of recombinant interleukin 2 following high dose chemo-radiotherapy for haematological malignancies: Applicability to the elimination of minimal residual disease. Br J Cancer 60:610–615, 1989.PubMedCrossRefGoogle Scholar
  92. 92.
    Blaise D, Olive D, Stoppa AM, Viens P, Pourreau C, Lopez G, Attal M, Jasmin C, Monges G, Mawas C: Hematologic and immunologie effects of the systemic administration of recombinant interleukin 2 after autologous bone marrow transplantation. Blood 76:1092–1097, 1990.PubMedGoogle Scholar
  93. 93.
    Meloni G, Foa R, Vignetti M, et al.: ABMT followed by IL-2 in children with advanced leukemia (abstrt). 17th Annu Meet ABMT, Cortina d’Ampezzo, 1991, p 27.Google Scholar
  94. 94.
    Chow LH, Mosbach-Ozmen L, Ryffel B, Borei JF: Syngeneic graft-versus-host disease induced by cyclosporin: A reappraisal. Transplantation 46:107S-112S, 1988.Google Scholar
  95. 95.
    Geller RB, Esa AH, Beschorner WE, Frondora CG, Santos GW, Hess AD: Successful in vitro graft-versus-tumor effect against an la bearing tumor using cyclosporine-induced syngeneic graft-versus-host disease in the rat. Blood 74:1165–1171, 1987.Google Scholar
  96. 96.
    Presented Keystone 1994.Google Scholar
  97. 97.
    Shi Y, Sahai BM, Green DR: Cyclosporine A inhibits activation-induced cell death in T cell hybridomas and thymocytes. Nature 339:625–626, 1989.PubMedCrossRefGoogle Scholar
  98. 98.
    Weisdorf DJ, Nesbit ME, Ramsay NKC, et al.: Allogeneic bone marrow transplantation for acute lymphoblastic leukemia in remission: Prolonged survival associated with acute graft versus host disease. J Clin Oncol 59:1348–1355, 1987.Google Scholar
  99. 99.
    Clayberger C, Wright A, Medeiros LJ, Koller TD, Link MP, Smith SD, Warnke RA, Krensky AM: Absence of cell surface LFA-1 as a mechanism of escape from immuno-surveillance. Lancet 2:553–556, 1987.Google Scholar
  100. 100.
    Urlacher A, Falkenrodt A, Tongio MM, Mayor S: HLA class I antigens on normal and leukemia cells (quantitative analysis). Tissue Antigens 29:237–245, 1987.PubMedCrossRefGoogle Scholar
  101. 101.
    Yunis JJ, Band H, Bonaville F, Yunis EJ: Differential expression of MHC class II antigens in myelomonocytic leukemia cell lines. Blood 73:931–937, 1989.PubMedGoogle Scholar
  102. 102.
    Roux M, Schraven B, Roux A, Camm H, Martelsmann R, Meuer S: Natural inhibitors of T cell activation in Hodgkin’s disease. Blood 78:2365–2371, 1991.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Anna Butturini
  • Robert Peter Gale

There are no affiliations available

Personalised recommendations