Detection of Minimal Residual Disease

  • John Gribben
  • Lee Nadler
Part of the Cancer Treatment and Research book series (CTAR, volume 76)


The ability to detect neoplastic infiltration is important not only for the accurate staging of disease at diagnosis but also to monitor the response to therapy. Although adult patients with advanced malignancies often achieve clinical complete remission, the majority of these patients ultimately relapse. The source of such relapse is most likely residual cancer cells that are below the limit of detection using standard diagnostic techniques. Therefore considerable effort has been made over the past decade to develop new techniques that have greatly increased the sensitivity of detection of minimal residual neoplastic cells. In particular, the identification of specific gene rearrangements and chromosomal translocations in neoplastic cells has permitted the development of sensitive molecular techniques that are capable of detecting minimal residual malignant cells. With the development of these more sensitive techniques, especially by the application of PCR technology, the presence of residual neoplastic cells in patients in complete clinical remission, commonly called minimal residual disease (MRD), has been demonstrated clearly.


Follicular Lymphoma Minimal Residual Disease Gene Rearrangement Autologous Bone Marrow Autologous Bone Marrow Transplantation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cleary ML, Chao J, Wanke R, Sklar J: Immunoglobulin gene rearrangement as a diagnostic criterion of B cell lymphoma. Proc Natl Acad Sci USA 81:593–597, 1984.PubMedCrossRefGoogle Scholar
  2. 2.
    Berliner N, Ault K, Martin P, Weisberg DS: Detection of clonal excess in lymphoproliferative disease by kappa/lambda analysis: Correlation with immunoglobulin gene DNA arrangements. Blood 67:80–85, 1986.PubMedGoogle Scholar
  3. 3.
    Hu E, Trela M, Thompson J, Lowder J, Horning S, Levy R, Sklar J: Detection of B cell lymphoma in peripheral blood by DNA hybridization. Lancet 2:1092–1095, 1985.PubMedCrossRefGoogle Scholar
  4. 4.
    Aisenberg AC: Utility of gene rearrangements in lymphoid malignancies. Ann Rev Med 44:75–84, 1993.PubMedCrossRefGoogle Scholar
  5. 5.
    Giesser H, Tkachuk D, Reis MD, Mak TW: Gene rearrangements and translocations in lymphoproliferative diseases. Blood 73:1402–1415, 1989.Google Scholar
  6. 6.
    Toyonaga B, Mak TW: Genes of the T-cell antigen receptor in normal and malignant T cells. Ann Rev Immunol 5:585–620, 1987.CrossRefGoogle Scholar
  7. 7.
    Arnold A, Cossman J, Bakhshi A, Jaffe ES, Waldmann TA, Korsmeyer SJ: Immunoglobulin gene rearrangements as unique clonal markers in human lymphoid neoplasms. N Engl J Med 309:1593–1599, 1983.PubMedCrossRefGoogle Scholar
  8. 8.
    Cheng GY, Minden MD, Toyonaga B, Mak TW, McCulloch EA: T cell receptor and immunoglobulin gene rearrangements in acute myeloblastic leukemia. J Exp Med 163: 414–424, 1986.PubMedCrossRefGoogle Scholar
  9. 9.
    Davey MP, Bongiovanni KF, Kaulfersch W, Quertermous T, Sedman JG, Herschfield MS, Kurtzberg J, Haynes BF, Davis MM, Waldmann TA: Immunoglobulin and T-cell receptor gene rearrangement and expression in human lymphoid leukemia cells at different stages of maturation. Proc Am Acad Sci USA 83:8759–8763, 1986.CrossRefGoogle Scholar
  10. 10.
    Korsmeyer SJ, Waldmann TA: Immunoglobulin genes: Rearrangement and translocation in human lymphoid malignancy. J Clin Immunol 4:1–11, 1984.PubMedCrossRefGoogle Scholar
  11. 11.
    Saiki RK, Scharf F, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N: Enzymatic amplification of betaglobin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1352, 1985.PubMedCrossRefGoogle Scholar
  12. 12.
    Dubrovic A, Trainor KJ, Morley AA: Detection of the molecular abnormality in chronic myeloid leukemia by use of the polymerase chain reaction. Blood 72:2063–2065, 1988.Google Scholar
  13. 13.
    Lee MS, LeMaistre A, Kantarjian HM, Talpaz M, Freireich EJ, Trujillo JM, Stass SA: Detection of two alternative bcr/abl mRNA junctions and minimal residual disease in Philadelphia chromosome positive chronic myelogenous leukemia by polymerase chain reaction. Blood 73:2165–2170, 1989.PubMedGoogle Scholar
  14. 14.
    Yunis JJ, Oken MM, Kaplan ME, Theologides RR, Howe A: Distinctive chromosomal abnormalities in histological subtypes of non-Hodgkin’s lymphoma. N Engl J Med 307: 1231–1236, 1982.PubMedCrossRefGoogle Scholar
  15. 15.
    Weiss LM, Warnke RA, Sklar J, Cleary ML: Molecular analysis of the t(14;18) chromosomal translocation in malignant lymphomas. N Engl J Med 317:1185–1189, 1987.PubMedCrossRefGoogle Scholar
  16. 16.
    Lee MS, Blick MB, Pathak S, Trujillo JM, Butler JJ, Katz RL, McLaughlin P, Hagemeister FB, Velasquez WS, Goodacre A, Cork A, Gutterman JU, Cabanillas F: The gene located at chromosome 18 band q21 is rearranged in uncultured diffuse lymphomas as well as follicular lymphomas. Blood 70:90–95, 1987.PubMedGoogle Scholar
  17. 17.
    Graninger WB, Seto M, Boutain B, Goldman P, Korsmeyer SJ: Expression of Bcl-2 and Bcl-2-Ig fusion transcripts in normal and neoplastic cells. J Clin Invest 80:1512–1515, 1987.PubMedCrossRefGoogle Scholar
  18. 18.
    Aisenberg AC, Wilkes BM, Jacobson JO: The bcl-2 gene is rearranged in many diffuse B-cell lymphomas. Blood 71:969–972, 1988.PubMedGoogle Scholar
  19. 19.
    Stetler SM, Crush SS, Cossman J: Involvement of the bcl-2 gene in Hodgkin’s disease [see comments]. J Natl Cancer Inst 82:855–858, 1990.CrossRefGoogle Scholar
  20. 20.
    Bhagat SK, Medeiros LJ, Weiss LM, Wang J, Raffeid M, Steuer SM: bcl-2 expression in Hodgkin’s disease. Correlation with the t(14;18) translocation and Epstein-Barr virus. Am J Clin Pathol 99:604–608, 1993.Google Scholar
  21. 21.
    Reid AH, Cunningham RE, Frizzera G, O’Leary TJ: bcl-2 rearrangement in Hodgkin’s disease. Results of polymerase chain reaction, flow cytometry, and sequencing on formalin-fixed, paraffin-embedded tissue. Am J Pathol 142:395–402, 1993.Google Scholar
  22. 22.
    Lorenzen J, Hansmann ML, Pezzella F, Hesse C, Kneba M, Gatter KC, Fischer R: Expression of the bcl-2 oncogene product and chromosomal translocation t(14;18) in Hodgkin’s disease. Hum Pathol 23:1205–1209, 1992.PubMedCrossRefGoogle Scholar
  23. 23.
    Louie DC, Kant JA, Brooks JJ, Reed JC: Absence of t(14;18) major and minor breakpoints and of Bcl-2 protein overproduction in Reed-Sterriberg cells of Hodgkin’s disease. Am J Pathol 139:1231–1237, 1991.PubMedGoogle Scholar
  24. 24.
    Athan E, Chadburn A, Knowles DM: The bcl-2 gene translocation is undetectable in Hodgkin’s disease by Southern blot hybridization and polymerase chain reaction. Am J Pathol 141:193–201, 1992.PubMedGoogle Scholar
  25. 25.
    Bakshi A, Jensen JP, Goldman P, Wright JJ, McBride OW, Epstein AL, Korsmeyer SJ: Cloning the chromosomal breakpoint of t(14;18) human lymphomas: Clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 41:899–906, 1985.Google Scholar
  26. 26.
    Cleary ML, Sklar J: Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint cluster region near a transcriptionally active locus on chromosome 18. Proc Natl Acad Sci USA 81:593–597, 1985.CrossRefGoogle Scholar
  27. 27.
    Tsujimoto Y, Gorman J, Jaffe E, Croce CM: The t(14;18) chromosome translocations invovled in B-cell neoplasms result from mistakes in VDJ joining. Science 229:1390–1393, 1985.PubMedCrossRefGoogle Scholar
  28. 28.
    Cleary ML, Galili N, Sklar J: Detection of a second t(14;18) breakpoint cluster region in human follicular lymphomas. J Exp Med 164:315–320, 1986.PubMedCrossRefGoogle Scholar
  29. 29.
    Ravetch JV, Siebenlist U, Korsmeyer S, Waldman T, Leder P: Structure of the human immunoglobulin m locus: Characterization of embryonic and rearranged J and D genes. Cell 27:583–591, 1981.PubMedCrossRefGoogle Scholar
  30. 30.
    Grescenzi M, Seto M, Herzig GP, Weiss PD, Griffith RC, Korsmeyer SJ: Thermostable DNA polymerase chain amplification of t( 14; 18) chromosome breakpoints and detection of minimal residual disease. Proc Natl Acad Sci USA 85:4869–4873, 1988.CrossRefGoogle Scholar
  31. 31.
    Ngan BY, Nourse J, Cleary ML: Detection of chromosomal translocation t(14;18) within the minor cluster region of bcl-2 by polymerase chain reaction and direct genomic sequencing of the enzymatically amplified DNA in follicular lymphomas. Blood 73:1759–1762, 1989.PubMedGoogle Scholar
  32. 32.
    Lee MS, Chang KS, Cabanillas F, Freireich EJ, Trujillo JM, Stass SA: Detection of minimal residual disease carrying the t(14;18) by DNA sequence amplification. Science 237:175–178, 1987.PubMedCrossRefGoogle Scholar
  33. 33.
    Soubeyran P, Cabinillas F, Lee MS: Analysis of the expression of the hybrid gene bcl-2/IgH in follicular lymphomas. Blood 81:122–127, 1993.PubMedGoogle Scholar
  34. 34.
    Steward CG, Potter MN, Oakhill A: Third complementarity determining region (CDR III) sequence analysis in childhood B-lineage acute lymphoblastic leukaemia: Implications for the design of oligonucleotide probes for use in monitoring minimal residual disease. Leukemia 6:1213–1219, 1992.PubMedGoogle Scholar
  35. 35.
    Yamada M, Hudson S, Tourney O, Birttenbender S, Shane SS, Lange B, Tsujimoto Y, Caton AJ, Rovera G: Detection of minimal disease in hematopoietic malignancies of the B-cell lineage by using third complementarity-determining region probes. Proc Natl Acad Sci USA 86:5123–5127, 1989.PubMedCrossRefGoogle Scholar
  36. 36.
    Yamada M, Wasserman R, Lange B, Reichard BA, Womer RB, Rovera G: Minimal residual disease in childhood B-lineage lymphoblastic leukemia. N Engl J Med 323:448–455, 1990.PubMedCrossRefGoogle Scholar
  37. 37.
    Bakkus MH, Heirman C, Van RI, Van CB, Thielemans K: Evidence that multiple myeloma Ig heavy chain VDJ genes contain somatic mutations but show no intraclonal variation. Blood 80:2326–2335, 1992.PubMedGoogle Scholar
  38. 38.
    Billadeau D, Quam L, Thomas W, Kay N, Greipp P, Kyle R, Oken MM, Van NB: Detection and quantitation of malignant cells in the peripheral blood of multiple myeloma patients. Blood 80:1818–1824, 1992.PubMedGoogle Scholar
  39. 39.
    Seidman JG, Max EE, Leder P: A K-immunoglobulin gene is formed by site specific recombination without further somatic mutation. Nature 280:370–375, 1979.PubMedCrossRefGoogle Scholar
  40. 40.
    Early P, Huang H, Davis M, Calarne K, Hood L: An immunoglobulin heavy chain variable region gene is generated from three segments of DNA. Cell 19:281, 1980.CrossRefGoogle Scholar
  41. 41.
    Sakano H, Kurosawa Y, Weigert M, Tonegawa S: Identification and nucleotide sequence of a diversity DNA segment (D) of immunoglobulin heavy chain genes. Nature 290:562, 1981.PubMedCrossRefGoogle Scholar
  42. 42.
    Korsmeyer SJ, Hieter PA, Ravetch JV, Poplack DG, Waldman TA, Leder P: Developmental hierarchy of immunoglobulin gene rearrangements in human leukemic pre-B cells. Proc Natl Acad Sci USA 78:7096, 1981.PubMedCrossRefGoogle Scholar
  43. 43.
    Tonegawa S: Somatic generation of antibody diversity. Nature 302:575–581, 1983.PubMedCrossRefGoogle Scholar
  44. 44.
    Billadeau D, Blackstadt M, Greipp P, Kyle RA, Oken MM, Kay N, Van NB: Analysis of B-lymphoid malignancies using allele-specific polymerase chain reaction: A technique for sequential quantitation of residual disease. Blood 78:3021–9, 1991.PubMedGoogle Scholar
  45. 45.
    Wasserman R, Yamada M, Ito Y, Finger LR, Reichard BA, Shane S, Lange B, Rovera G: VH gene rearrangement events can modify the immunoglobulin heavy chain during progression of B-lineage acute lymphoblastic leukemia. Blood 79:223–228, 1992.PubMedGoogle Scholar
  46. 46.
    Steward CG, Goulden NJ, Potter MN, Oakhill A: The use of polymerase chain reaction to detect minimal residual disease in childhood acute lymphoblastic leukaemia. Eur J Cancer 29A:1192–1198, 1993.PubMedGoogle Scholar
  47. 47.
    Osada H, Seto M, Ueda R, Emi N, Takagi N, Obata Y, Suchi T, Takahashi T: bcl-2 gene rearrangement analysis in Japanese B cell lymphoma; novel bcl-2 recombination with immunoglobulin kappa chain gene. Jpn J Cancer Res 80:711–715, 1989.PubMedCrossRefGoogle Scholar
  48. 48.
    Knowles DM: Immunophenotypic and antigen receptor gene rearrangement analysis in T cell neoplasia. Am J Pathol 134:761–785, 1989.PubMedGoogle Scholar
  49. 49.
    Waldmann TA: The arrangement of immunoglobulin and T-cell receptor genes in human lymphoproliferative disorders. In Dixon FJ (ed): Advances in Immunology. San Diego, CA: Academic Press, 1987, pp 247–321.Google Scholar
  50. 50.
    Macintyre EA, d’Auriol L, Duparc N, Leverger G, Galibert F, Sigaux F: Use of oligo-nucleotide probes directed against T cell antigen receptor gamma delta variable-(diversity)-joining junctional sequences as a general method for detecting minimal residual disease in acute lymphoblastic leukemias. J Clin Invest 86:2125–2135, 1990.PubMedCrossRefGoogle Scholar
  51. 51.
    Yokota S, Hansen-Hagge TE, Bartram CR: T-cell receptor d gene recombination in common acute lymphoblastic leukemia: Preferential usage of Vd2 and frequent involvement of the Ja cluster. Blood 77:141–148, 1991.PubMedGoogle Scholar
  52. 52.
    Kwok S, Higuchi R: Avoiding false positives with PCR. Nature 339:237–238, 1989.PubMedCrossRefGoogle Scholar
  53. 53.
    Wang AM, Doyle MV, Mark DF: Quantitation of mRNA by the polymerase chain reaction. Proc Natl Acad Sci USA 86:9717–9721, 1989.PubMedCrossRefGoogle Scholar
  54. 54.
    Gilliland G, Perrin S, Blanchard K, Bunn, HF: Analysis of cytokine mRNA and DNA: Detection and quantitation by competitive polymerase chain reaction. Proc Natl Acad Sci USA 87:2725–2729, 1990.PubMedCrossRefGoogle Scholar
  55. 55.
    Limpens J, de Jong D, Voetdijk AMH, Price C, Young BD, van Ommen GJB, van Krieken JHJM, Slaper-Cortenbach I: Translocation t(14;18) in benign B lymphocytes. Blood 76(Suppl l):237a, 1990.Google Scholar
  56. 56.
    Benjamin D, Magrath IT, Douglass EC, Corash LM: Derivation of lymphoma cell lines from microscopically normal bone marrow in patients with undifferentiated lymphoma: Evidence of occult bone marrow involvement. Blood 61:1017–1019, 1983.PubMedGoogle Scholar
  57. 57.
    Favrot MC, Herve P: Detection of minimal malignant cell infiltration in the bone marrow of patients with solid tumors, non-Hodgkin’s lymphomas and leukemias. Bone Marrow Transplant 2:117–122, 1987.PubMedGoogle Scholar
  58. 58.
    Favrot M, Philip I, Combaret V, Pavone E, Bouffet E, Biron P, Philip T: Monoclonal antibodies and complement purged autograft in Burkitt lymphoma and lymphoblastic leukemia. Bone Marrow Transplant 4:202–204, 1989.PubMedGoogle Scholar
  59. 59.
    Estrov Z, Grunberger T, Dube ID: Detection of residual acute lymphoblastic leukemia cells in cultures of bone marrow obtained during remission. N Engl J Med 315:538–542, 1986.PubMedCrossRefGoogle Scholar
  60. 60.
    Sharp JG, Joshi SS, Armitage JO, Bierman P, Coccia PF, Harrington DS, Kessinger A, Crouse DA, Mann SL, Weisenberger DD: Significance of detection of occult non-Hodgkin’s lymphoma in histologically uninvolved bone marrow by culture technique. Blood 79: 1074–1080, 1992.PubMedGoogle Scholar
  61. 61.
    Gribben JG, Freedman A, Woo SD, Blake K, Shu RS, Freeman G, Longtine JA, Pinkus GS, Nadler LM: All advanced stage non-Hodgkin’s lymphomas with a polymerase chain reaction amplifiable breakpoint of bcl-2 have residual cells containing the bcl-2 rearrangement at evaluation and after treatment. Blood 78:3275–3280, 1991.PubMedGoogle Scholar
  62. 62.
    Hickish TF, Purvies H, Mansi J, Soukop M, Cunningham D: Molecular monitoring of low grade non-Hodgkin’s lymphoma by gene amplification. Br J Cancer 64:1161–1163, 1991.PubMedCrossRefGoogle Scholar
  63. 63.
    Lambrechts AC, de Ruiter PE, Dorssers LC, van’t Veer MB: Detection of residual disease in translocation (14;18) positive non-Hodgkin’s lymphoma, using the polymerase chain reaction: A comparison with conventional staging methods. Leukemia 6:29–34, 1992.PubMedGoogle Scholar
  64. 64.
    Berinstein NL, Reis MD, Ngan BY, Sawka CA, Jamal HH, Kuzniar B: Detection of occult lymphoma in the peripheral blood and bone marrow of patients with untreated early stage and advanced stage follicular lymphoma. J Clin Oncol 11:1344–1352, 1993.PubMedGoogle Scholar
  65. 65.
    Berinstein NL, Jamal HH, Kuzniar B, Klock RJ, Reis MD: Sensitive and reproducible detection of occult disease in patients with follicular lymphoma by PCR amplification of t(14;18) both pre-and post-treatment. Leukemia 7:113–119, 1993.PubMedGoogle Scholar
  66. 66.
    Yuan R, Dowling P, Zucca E, Diggelmann H, Cavalli F: Detection of bcl-2/JH rearrangement in follicular and diffuse lymphoma: Concordant results of peripheral blood and bone marrow analysis at diagnosis. Br J Cancer 67:922–925, 1993.PubMedCrossRefGoogle Scholar
  67. 67.
    Deane M, McCarthy KP, Wiedemann LM, Norton JD: An improved method for detection of B-lymphoid clonality by polymerase chain reaction. Leukemia 5:726–730, 1991.PubMedGoogle Scholar
  68. 68.
    Wan JH, Sykes PJ, Orell SR, Morley AA: Rapid method for detecting monoclonality in B cell lymphoma in lymph node aspirates using the polymerase chain reaction. J Clin Pathol 45:420–423, 1992.PubMedCrossRefGoogle Scholar
  69. 69.
    Diss TC, Peng H, Wotherspoon AC, Isaacson PG, Pan L: Detection of monoclonality in low-grade B-cell lymphomas using the polymerase chain reaction is dependent on primer selection and lymphoma type. J Pathol 169:291–295, 1993.PubMedCrossRefGoogle Scholar
  70. 70.
    Veelken H, Tycko B, Sklar J: Sensitive detection of clonal antigen receptor gene rearrangements for the diagnosis and monitoring of lymphoid neoplasms by a polymerase chain reaction-mediated ribonuclease protection assay. Blood 78:1318–1326, 1991.PubMedGoogle Scholar
  71. 71.
    Stole V, Uhrmacher J, Krause JR: Detection of rearrangement of immunoglobulin heavy chain and T-cell receptor beta chain in leukemic cells by restricted polymerase chain reaction. Am J Hematol 38:1–8, 1991.CrossRefGoogle Scholar
  72. 72.
    Freedman AS, Takvorian T, Anderson KC, Mauch P, Rabinowe SN, Blake K, Yeap B, Soiffer R, Coral F, Heflin L, Ritz J, Nadler LM: Autologous bone marrow transplantation in B-cell non-Hodgkin’s lymphoma: Very low treatment-related mortality in 100 patients in sensitive relapse. J Clin Oncol 8:1–8, 1990.Google Scholar
  73. 73.
    Freedman AS, Takvorian T, Neuberg D, Mauch P, Rabinowe SN, Anderson KC, Soiffer RJ, Spector N, Grossbard M, Robertson MJ, Ritz JK, Nadler LM: Autologous bone marrow transplantation in poor-prognosis intermediate-grade and high-grade B-cell non-Hodgkin’s lymphoma in first remission: A pilot study. J Clin Oncol 11:931–936, 1993.PubMedGoogle Scholar
  74. 74.
    Nadler LM, Takvorian T, Botnick L, Bast RC, Finberg R, Hellman S, Canellos GP, Schlossman SF: Anti-Bl monoclonal antibody and complement treatment in autologous bone-marrow transplantation for relapsed B-cell non-Hodgkin’s lymphoma. Lancet 2: 427–431, 1984.PubMedCrossRefGoogle Scholar
  75. 75.
    Takvorian T, Canellos GP, Ritz J, Freedman AS, Anderson KC, Mauch P, Tarbell N, Coral F, Daley H, Yeap B, Schlossman SF, Nadler LM: Prolonged disease-free survival after autologous bone marrow transplantation in patients with non-Hodgkin’s lymphoma with a poor prognosis. N Engl J Med 316:1499–1505, 1987.PubMedCrossRefGoogle Scholar
  76. 76.
    Hurd DD, LeBien TW, Lasky LC, Haake RJ, Ramsay NKC, Kim, TH, Levine EG, McGlave PB, Bloomfield CD, Peterson BA, Kersey JH: Autologous bone marrow transplantation in non-Hodgkin’s lymphoma: Monoclonal antibodies plus complement for ex vivo marrow treatment. Am J Med 85:829–834, 1988.PubMedCrossRefGoogle Scholar
  77. 77.
    Brenner MK, Rill DR, Moen RC, Krance RA, Mirro J, Anderson WF, Ihle JN: Gene-marking to trace origin of relapse after autologous bone-marrow transplantation. Lancet 341:85–86, 1993.PubMedCrossRefGoogle Scholar
  78. 78.
    Gribben JG, Freedman AS, Neuberg D, Roy DC, Blake KW, Woo SD, Grossbard ML, Rabinowe SN, Coral F, Freeman GJ, Ritz JK, Nadler LM: Immunologic purging of marrow assessed by PCR before autologous bone marrow transplantation for B-cell lymphoma. N Engl J Med 325:1525–1533, 1991.PubMedCrossRefGoogle Scholar
  79. 79.
    Negrin RS, Kiem HP, Schmidt WI, Blume KG, Cleary ML: Use of the polymerase chain reaction to monitor the effectiveness of ex vivo tumor cell purging. Blood 77:654–660, 1991.PubMedGoogle Scholar
  80. 80.
    Gribben JG, Neuberg DN, Barber M, Moore J, Pesek KW, Freedman AS, LM N: Detection of residual lymphoma cells by polymerase chain reaction in peripheral blood is significantly less predictive for relapse than detection in bone marrow. Blood 83: 3800–3807, 1994.Google Scholar
  81. 81.
    Freedman AS, Munro JM, Morimoto C, Mclntyre BW, Rhynhart K, Lee N, Nadler LM: Follicular non-Hodgkin’s lymphoma cell adhesion to normal germinal centers and neoplastic follicles involves very late antigen-4 and vascular adhesion molecule-1. Blood 79:206–212, 1992.Google Scholar
  82. 82.
    Gribben JG, Saporito L, Barber M, Blake KW, Edwards RM, Griffin JD, Freedman AS, Nadler LM: Bone marrows of non-Hodgkin’s lymphoma patients with a bcl-2 translocation can be purged of polymerase chain reaction-detectable lymphoma cells using monoclonal ntibodies and immunomagnetic bead depletion. Blood 80:1083–1089, 1992.PubMedGoogle Scholar
  83. 83.
    Berenson RJ, Andrews RG, Bensinger WI: Antigen CD34+ marrow cells engraft lethally irradiated baboons. J Clin Invest 81:951–955, 1988.PubMedCrossRefGoogle Scholar
  84. 84.
    Berenson RJ, Bensinger WI, Hill RS: Engraftment after infusion of CD34+ marrow cells in patients with breast cancer or neuroblastoma. Blood 77:1717–1722, 1991.PubMedGoogle Scholar
  85. 85.
    Ault KA: Detection of small numbers of monoclonal B lymphocytes in the blood of patients with B cell lymphoma. N Engl J Med 300:1401–1405, 1979.PubMedCrossRefGoogle Scholar
  86. 86.
    Horning SJ, Galila N, Cleary M, Sklar J: Detection of non-Hodgkin’s lymphoma in the peripheral blood by analysis of the antigen receptor gene rearrangements: Results of a prospective trial. Blood 75:1139–1145, 1990.PubMedGoogle Scholar
  87. 87.
    Gabert J, Lafage M, Maraninchi D, Thuret I, Carcasonne Y, Mannoni P: Detection of residual bcr/abl translocation by polymerase chain reaction in chronic myeloid leukemia patients after bone marrow transplantation. Lancet 2:1125–1128, 1989.PubMedCrossRefGoogle Scholar
  88. 88.
    Lange W, Snyder DS, Castro R, Rossi JJ, Blume KG: Detection by enzymatic amplification of bcr/abl mRNA in peripheral blood and bone marrow cells of patients with chronic myelogenous leukemia. Blood 73:1735–1741, 1989.PubMedGoogle Scholar
  89. 89.
    Pignon JM, Henni T, Amselem S, Vidaud M, Dequesnoy P, Vernant JP, Kuentz M, Cordonnier C, Rochant H, Goosens M: Frequent detection of minimal residual disease by use of polymerase chain reaction in long-term survivors after bone marrow transplantation for chronic myeloid leukemia. Leukemia 4:83–86, 1990.PubMedGoogle Scholar
  90. 90.
    Martiat P, Maisin D, Philippe M, Ferrant A, Michaux JL, Cassiman JJ, Van den Berghe H: Detection of residual bcr/abl transcripts in chronic myeloid leukaemia patients in complete remission using the polymerase chain reaction and nested primers. Br J Haematol 75:355–358, 1990.PubMedCrossRefGoogle Scholar
  91. 91.
    Ades EW, Peacocke N, Sabio H: Lymphokine-activated killer cell lysis of human neuroblastoma cells: A model for purging tumor cells from bone marrow. Clin Immunol Immunopathol 46:150–156, 1988.PubMedCrossRefGoogle Scholar
  92. 92.
    Sawyers CL, Timson L, Kawasaki ES, Clark SS, Witte ON, Champlin R: Molecular relapse in chronic myelogenous leukemia patients after bone marrow transplantation detected by polymerase chain reaction. Proc Natl Acad Sci USA 87:563–567, 1990.PubMedCrossRefGoogle Scholar
  93. 93.
    Roth MS, Antin JH, Ash R, Terry VH, Gotlieb M, Silver SM, Ginsburg D: Prognostic significance of Philadelphia chromosome-positive cells detected by the polymerase chain reaction after allogeneic bone marrow transplant for chronic myelogenous leukemia. Blood 79:276–282, 1991.Google Scholar
  94. 94.
    Gribben JG, Neuberg D, Freedman AS, Gimmi CD, Pesek KW, Barber M, Saporito L, Woo SD, Coral F, Spector N, Rabinowe SN, Grossbard ML, Ritz J, Nadler LM: Detection by polymerase chain reaction of residual cells with the bcl-2 translocation is associated with increased risk of relapse after autologous bone marrow transplantation for B-cell lymphoma. Blood 81:3449–3457, 1993.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • John Gribben
  • Lee Nadler

There are no affiliations available

Personalised recommendations