Advertisement

Recombinant Hematopoietic Growth Factors in Bone Marrow Transplantation

  • John Nemunaitis
Part of the Cancer Treatment and Research book series (CTAR, volume 76)

Abstract

Hematopoietic growth factors are naturally occurring glycoproteins that stimulate the proliferation of hematopoietic cells [1–3]. Initial discovery of hematopoietic growth factors was based on proliferative activity identified by in vitro assay systems. Erythropoietin (EPO) stimulates erythrocyte maturation, granulocyte-colony-stimulating factor (G-CSF) stimulates neutrophil proliferation, and granulocyte-macrophage-colony-stimulating factor (GM-CSF) stimulates neutrophil, monocyte, and macrophage proliferation. These three recombinant cytokines have been approved by the Food and Drug Administration (FDA) for clinical use and have been and are being evaluated in patients undergoing bone marrow or peripheral blood stem cell transplantation.

Keywords

Bone Marrow Transplantation Stem Cell Factor Allogeneic Bone Marrow Allogeneic Bone Marrow Transplantation Autologous Hematopoietic Stem Cell Transplantation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clark SC, Kamen R: The human hematopoietic colony-stimulatory factors. Science 236:1229–1237, 1987.PubMedGoogle Scholar
  2. 2.
    Metcalf D: The granulocyte-macrophage colony-stimulating factors. Science 229:16–22, 1985.PubMedGoogle Scholar
  3. 3.
    Singer JW, Nemunaitis J: Use of Recombinant Growth Factors in Bone Marrow Transplantation. In Forman SJ, Blume KG, Thomas ED (eds): Bone Marrow Transplantation. Cambridge, MA: Blackwell Scientific 24:309–326, 1994.Google Scholar
  4. 4.
    Souza LM, Boone TC, Gabrilove J, et al.: Recombinant human granulocyte colony-stimulating factors: Effects on normal and leukemic myeloid cells. Science 232: 61–65, 1986.PubMedGoogle Scholar
  5. 5.
    Robinson BE, McGrath HE, Quesenberry PJ: Recombinant human granulocyte colony-stimulating factor has megakaryocyte colony-stimulating activity and augments megakaryocyte colony stimulation by interleukin-3. J Clin Invest 79:1648–1652, 1987.PubMedGoogle Scholar
  6. 6.
    Williams DE, Park LS, Broxmeyer HE: Hybrid cytokines as hematopoietic growth factors. Int J Cell Cloning 9:542–547, 1991.PubMedGoogle Scholar
  7. 7.
    Kaushansky K, Adamson JW: Interleukin-1 stimulates fiberglass to synthesize granulocyte macrophage and granulocyte colony-stimulatng factors. J Clin Invest 81:92–97, 1989.Google Scholar
  8. 8.
    Nemunaitis J, Andrews DF, Crittenden C, et al.: Response of simian virus 40 (SV40)-transformed, cultured human marrow stromal cells to hematopoietic growth factors. J Clin Invest 83:593–601, 1989.PubMedGoogle Scholar
  9. 9.
    Quesenberry PJ, McGrath HE, Williams ME, et al.: Multifactor stimulation of mega-karyocytopoiesis: Effects of interleukin 6. Exp Hematol 19:35–41, 1991.PubMedGoogle Scholar
  10. 10.
    Nemunaitis J, Andrews DF, Mochizuki DY, et al.: Human marrow stromal cells: Response to interleukin-6 (IL-6) and control of IL-6 expression. Blood 74:1929–1935, 1989.PubMedGoogle Scholar
  11. 11.
    Leary AG, Ikebuchi K, Hirai Y, et al.: Synergism between interleukin-6 and interleukin-3 plus colony-stimulating proliferation of human hematopoietic stem cells: Comparison with interleukin-1. Exp Hematol 71:1759–1763, 1989.Google Scholar
  12. 12.
    Bartelmez SH, Bardley TR, Bertoncello I, et al.: Interleukin-1 plus interleukin-3 plus colony-stimulating factor-1 are essential for clonal proliferation of primitive myeloid bone marrow cells. Exp Hematol 17:240–245, 1989.PubMedGoogle Scholar
  13. 13.
    Broxmeyer HE, Williams DE, Lu L, et al.: The suppressive influences of human tumor necrosis factors on bone marrow hematopoietic progenitor cells from normal donors and patients with leukemia: Synergies among human necrosis factor and interferon gamma. J Clin Immunol 136:4487–4495, 1986.Google Scholar
  14. 14.
    Sing GK, Keller JR, Ellingsworth LR, et al.: Transforming growth factor beta selectively inhibits normal and leukemic bone marrow cell growth in vitro. Blood 72:1504, 1988.PubMedGoogle Scholar
  15. 15.
    Caux C, Saeland S, Favre C, et al.: TNF-∝ strongly potentiates IL-3 and GM-CSF induced proliferation of human CD34+ hematopoietic progenitor cells. Blood 71:2292–2298, 1990.Google Scholar
  16. 16.
    Muench MO, Schneider G, Moore MAS: Interactions among colony-stimulatory factors; IL-Iβ, IL-6 and kit ligand in the regulation of primitive hematopoietic cells. Exp Hematol 20:339–349, 1992.PubMedGoogle Scholar
  17. 17.
    Ogawa M, Clark SC: Synergistic interaction between interleukin-6 and interleukin-3 in support of stem cell proliferation in culture. Blood Cells 14:329–337, 1988.PubMedGoogle Scholar
  18. 18.
    Ikebuchi K, Ihle JN, Hirai Y, et al.: Synergistic factors for stem cell proliferation: Further studies of the target stem cells and the mechanism of stimulation by interleukin-1; interleukin-6; and granulocyte colony-stimulating factor. Blood 72:2007–2014, 1988.PubMedGoogle Scholar
  19. 19.
    Bussolino F, Wang JM, Defilippi P, et al.: Granulocyte and granulocyte macrophage colony-stimulating factors induce human endothelial cells to migrate and proliferate. Nature 337:471–473, 1989.PubMedGoogle Scholar
  20. 20.
    Nemunaitis J: Macrophage function activating cytokines: Potential clinical applications. Crit Rev Oncol Hematol 14:153–171, 1993.PubMedGoogle Scholar
  21. 21.
    Onderdonk AB, Cisneros RL, Hinkson P, et al.: Anti-infective effect of ply Bl-6 flucotriosys Bl-3 glucopyranose (PPG) glucan in vivo. Infect Immun 60:1642–1647, 1992.PubMedGoogle Scholar
  22. 22.
    Pelus LM, King AG, Broxmeyer HE: In vivo modulation of hematopoiesis by a novel hematoregulatory peptide. Exp Hematol 22:239–247, 1994.PubMedGoogle Scholar
  23. 23.
    Blanchard DK, Michelini-Norris MB, Pearson CA, et al.: Production of granulocyte macrophage colony-stimulating factor (GM-CSF) by monocytes and large granular lymphocytes stimulated with Mycobacterium avium intracellulazre: Activation of bacteriocidal activity by GM-CSF. Infect Immun 59:2396–2402, 1991.PubMedGoogle Scholar
  24. 24.
    Roilides E, Walsh TJ, Pizzo PA, et al.: Granulocyte colony-stimulating factor enhances the phagocytic and bactericidal activity of normal and defective human neutrophils. J Infect Dis 163:579–583, 1991.PubMedGoogle Scholar
  25. 25.
    Bober LA, Grace MJ, Pugliese-Sivo C, et al.: The effect of GM-CSF and G-CSF on human neutrophil function. Immunopharm 29:111–195, 1995.Google Scholar
  26. 26.
    Masuda A, et al.: Induction of mitochondrial manganese Superoxide dismutase by interleukin-1. FASEB J 2:3087–3091, 1988.PubMedGoogle Scholar
  27. 27.
    Fabian I, Baldwin GC, Golde DW: Biosynthetic granulocyte macrophage colony-stimulating factor enhances neutrophil cytotoxicity toward human leukemia cells. Leukemia 1:613–617, 1987.PubMedGoogle Scholar
  28. 28.
    Hoang T, Haman A, Goncalves O, et al.: Interleukin-1 enhances growth factor proliferation of the clonogenic cells in acute myeloblastic leukemia and of normal human primitive hematopoietic precursors. J Exp Med 168:463–474, 1988.PubMedGoogle Scholar
  29. 29.
    Zsebo KM, Wypych J, McNiece IK, et al.: Identification, purification and biological characterization of hematopoietic stem cell factor from buffalo rat liver-conditioned medium. Cell 63:195–201, 1990.PubMedGoogle Scholar
  30. 30.
    DiPersio JF, Reading C, Deisseroth A, et al.: SCF converts GM-CSF/IL-3 unresponsive and receptor negative AML cells to IL-3/GM-CSF responsive cells in vitro (abstr). Blood 78(Suppl 1):270, 1991.Google Scholar
  31. 31.
    Cohen AM, Zsebo KM, Inou H, et al.: In vivo stimulation of granulopoiesis by recombinant human granulocyte colony-stimulating factor. Proc Natl Acad Sci USA 84: 2484–2488, 1987.PubMedGoogle Scholar
  32. 32.
    Nienhuis AW, Donahue RE, Karisson S, et al.: Recombinant human granulocyte macrophage colony-stimulating factor (GM-CSF) shortens the period of neutropenia after autologous bone marrow transplantation in a primate model. J Clin Invest 80:573–577, 1987.PubMedGoogle Scholar
  33. 33.
    Oppenheim JJ, Neta R, Tiberghien P, et al.: Interleukin-1 enhances survival of lethally irradiated mice treated with allogeneic bone marrow cells. Blood 74:2257–2263, 1989.PubMedGoogle Scholar
  34. 34.
    Gillio AP, Gasparetto C, Laver J, et al.: Effects of interleukin-3 on hematopoietic recovery after 5 fluorouracil or cyclophosphamide treatment of cynomolgus primates. J Clin Invest 85:1560–1565, 1990.PubMedGoogle Scholar
  35. 35.
    Andrews RG, Knitter GH, Bartelmez SH, et al.: Recombinant human stem cell factor, a c-kit ligand, stimulates hematopoiesis in primates. Blood 78:1975–1980, 1991.PubMedGoogle Scholar
  36. 36.
    Ishibashi T, Kimura H, Shikama Y, et al.: Interleukin-6 is a potent thrombopoietic factor in vivo in mice. Blood 74:1241–1244, 1991.Google Scholar
  37. 37.
    Musashi M, Clark SC, Sudo T, Urdal D, Ogawa M: Synergistic interaction between interleukin-11 and interleukin-4 in support of proliferation of primitive hematopoietic progenitors of mice. Blood 78:144–1451, 1991.Google Scholar
  38. 38.
    Asabi S, Okano A, Ozawa K, et al.: In vivo effects of recombinant human interleukin-6 in primates: Stimulated production of platelets. Blood 75:1602–1605, 1990.Google Scholar
  39. 39.
    Mayer P, Gissler K, Valent P, et al.: Recombinant human interleukin-6 is a potent inducer of the acute phase response and elevates the blood platelets in nonhuman primates. Exp Hematol 19:688–696, 1991.PubMedGoogle Scholar
  40. 40.
    Frenck TW, Sarman G, Harper TE, et al.: The ability of recombinant murine granulocyte macrophage colony-stimulating factor to protect neonatal rats from septic death due to Staphylococcus aureus. J Infect Dis 162:109–114, 1990.PubMedGoogle Scholar
  41. 41.
    Cenci E, Bartocci A, Puccetti P, et al.: Macrophage colony-stimulating factor in murine candidiasis: Serum and tissue levels during infection and protective effect of exogenous administration. Infect Immun 59:868–872, 1991.PubMedGoogle Scholar
  42. 42.
    Bermudez LE, Martinelli JC, Gascon R: Protection against gram-negative bacteremia in neutropenic mice with recombinant granulocyte-macrophage colony-stimulating factor. Cytokine 2:287–293, 1990.PubMedGoogle Scholar
  43. 43.
    Mayer P, Schultz E, Lam C: Recombinant human granulocyte-macrophage, colony-stimulating factor augments neutrophil recovery and enhances resistance to infections in myelosuppressed mice. J Infect Dis 163:584–590, 1991.PubMedGoogle Scholar
  44. 44.
    Wang M, Friedman HD, Jeu JY: Enhancement of human monocyte function against Candida albicans by the colony-stimulating factors (CSF): IL-3, granulocyte macrophage-CSF, and macrophage-CSF. J Immunol 143:671–677, 1989.PubMedGoogle Scholar
  45. 45.
    Motoyoshi K, Takaku F, Maekawa T, et al.: Protective effect of partially purified urinary colony-stimulating factor on granulocytopenia after antitumor chemotherapy. Exp Hematol 14:1069–1075, 1986.PubMedGoogle Scholar
  46. 46.
    Lee MT, Warren MK: CSF-1 induced resistance to viral infection in mucin macrophages. J Immunol 138:3019–3022, 1987.PubMedGoogle Scholar
  47. 47.
    Donahue RE, Seehra J, Metzger M, et al.: Human IL-3 and GM-CSF act synergistically in stimulating hematopoiesis in primates. Science 241:1820–1823, 1988.PubMedGoogle Scholar
  48. 48.
    Krumwieh D, Seiler FR: In vivo effects of recombinant colony-stimulating factors on hematopoiesis in cynomolgus monkeys. Transplant Proc 21:2964–2967, 1989.PubMedGoogle Scholar
  49. 49.
    Mayer P, Valent P, Schmidt G, et al.: The in vivo effects of recombinant human interleukin-3: Demonstration of basophil differentiation factor, histamine-producing activity and priming of GM-CSF-responsive progenitors in human primates. Blood 74: 613–621, 1989.PubMedGoogle Scholar
  50. 50.
    Blazar BR, Widmer MB, Soderling CB, et al.: Augmentation of donor bone marrow engraftment in histoincompatible murine recipients by granulocyte-macrophage colony-stimulating factor. Blood 71:320–328, 1988.PubMedGoogle Scholar
  51. 51.
    Blazar BR, Widmer MB, Cosman D, et al.: Improved survival and leukocyte reconstitution without detrimental effects on engraftment in murine recipients of human recombinant granulocyte colony-stimulating factor after transplantation of T-cell depleted histoincompatible bone marrow. Blood 74:2264–2269, 1989.PubMedGoogle Scholar
  52. 52.
    Atkinson K, Matias C, Guiffre A, et al.: In vivo administration of granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-1 (IL-1), and IL-4 alone and in combination, after allogeneic murine hematopoietic stem cell transplantation. Blood 77:1376–1382, 1991.PubMedGoogle Scholar
  53. 53.
    Pojda Z, Molineux G, Dexter TM: Effects of long term in vivo treatment of mice with purified murine recombinant GM-CSF. Exp Hematol 17:1100–1104, 1989.PubMedGoogle Scholar
  54. 54.
    Lang RA, Metcalf D, Cuthberston RA, et al.: Transgenic mice expressing hematopoietic growth factor gene (GM-CSF) develop accumulations of macrophages, blindness, and a fatal syndrome of tissue damage. Cell 51:675–686, 1987.PubMedGoogle Scholar
  55. 55.
    Schuening FG, Storb R, Goehle S, et al.: Recombinant human granulocyte colony-stimulating factor accelerates recovery after DLA-identical littermate marrow transplants in dogs. Blood 76:636–640, 1990.PubMedGoogle Scholar
  56. 56.
    Schuening FG, Storb R, Goehle S, et al.: Effect of recombinant human granulocyte colony-stimulating factor on hematopoiesis of normal dogs and on hematopoietic recovery after otherwise lethal total body irradiation. Blood 74:1308–1313, 1989.PubMedGoogle Scholar
  57. 57.
    Oppenheim JJ, Neta R, Tiberghien P, et al.: Interleukin-1 enhances survival of lethally irradiated mice treated with allogeneic bone marrow cells. Blood 74:2257–2263, 1989.PubMedGoogle Scholar
  58. 58.
    Brandt SJ, Peters WP, Atwater SK, et al.: Effect of recombinant human granulocyte-macrophage colony-stimulating factor on hematopoietic reconstitution after high-dose chemotherapy and autologous bone marrow transplantation. N Engl J Med 318: 869–876, 1988.PubMedGoogle Scholar
  59. 59.
    Nemunaitis J, Singer JW, Buckner CD, et al.: Use of recombinant human granulocyte-macrophage colony-stimulating factor in autologous bone marrow transplantation for lymphoid malignancies. Blood 72:834–836, 1988.PubMedGoogle Scholar
  60. 60.
    Nemunaitis J, Singer JW, Buckner CD, et al.: Use of recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF) in autologous marrow transplantation for lymphoid malignancies. In Dicke KA (ed): Autologous Bone Marrow Transplantation: Procedures of the Third International Symposium. Houston: University of Houston, 1989, pp 631–636.Google Scholar
  61. 61.
    Devereaux S, Linch DC, Gribben JG, et al.: GM-CSF accelerates neutrophil recovery after autologous bone marrow transplantation for Hodgkin’s disease. Bone Marrow Transplant 4:49–54, 1989.PubMedGoogle Scholar
  62. 62.
    Blazar BR, Kersey JH, McGlave PB, et al.: In vivo administration of recombinant human granulocyte-macrophage colony-stimulating factor in acute lymphoblastic leukemia patients receiving purged autografts. Blood 73:849–857, 1989.PubMedGoogle Scholar
  63. 63.
    Link H, Freund M, Kirchner H, et al.: Recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) after bone marrow transplantation. Behring Inst Mitt 83:313–319, 1988.PubMedGoogle Scholar
  64. 64.
    Lazarus HM, Coiffer B, Hyatt M, et al.: rhuGM-CSF shortens aplasia after autologous bone marrow transplantion for relapsed non-Hodgkin’s lymphoma: Blood and bone marrow progenitor growth studies: A phase II Eastern Cooperative Oncology Group Trial. Blood 78:830–837, 1991.PubMedGoogle Scholar
  65. 65.
    DeWitte T, Gratwohl A, Vanderlely N, et al.: Recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) reduces infection related mortality after allogeneic T-depleted bone marrow transplantation. Bone Marrow Transplant 7:83–89, 1991.Google Scholar
  66. 66.
    O’Day SJ, Rabinowe SN, Neuberg D, et al.: A phase II study of continuous infusion recombinant human granulocyte macrophage colony-stimulating factor as an adjunct to autologous bone marrow transplantation for patients with non-Hodgkin’s lymphoma in first remission. Blood 83:2707–2714, 1994.PubMedGoogle Scholar
  67. 67.
    Nemunaitis J, Singer JW, Buckner CD, et al.: Long-term follow-up of patients who received recombinant human granulocyte-macrophage colony-stimulating factor after autologous bone marrow transplantation for lymphoid malignancy. Bone Marrow Transplant 7:49–52, 1991.PubMedGoogle Scholar
  68. 68.
    Nemunaitis J, Rabinower SN, Singer JW, et al.: Recombinant granulocyte-macrophage colony-stimulating factor after autologous bone marrow transplantation for lymphoid cancer. N Engl J Med 324:1773–1778, 1991.PubMedGoogle Scholar
  69. 69.
    Rabinowe SN, Nemunaitis J, Armitage J, et al.: The impact of myeloid growth factors on engraftment following autologous bone marrow transplantation for malignant lymphoma. Semin Hematol 28(Suppl 2):6–16, 1991.PubMedGoogle Scholar
  70. 70.
    Gorin NC, Coiffier B, Hayat M, et al.: rhuGM-CSF shortens aplasia duration after ABMT in non-Hodgkin’s lymphoma: A randomized placebo-controlled double-blind study. Bone Marrow Transplant 7(Suppl 2):82, 1991.PubMedGoogle Scholar
  71. 71.
    Visani G, Gamberi B, Greenberg P, et al.: The use of GM-CSF as an adjunct to autologous/syngeneic bone marrow transplantation: A prospective randomized controlled trial. Bone Marrow Transplant 7(Suppl 2):81, 1991.PubMedGoogle Scholar
  72. 72.
    Advani R, Chao NJ, Horning SJ, et al.: Granulocyte-macrophage colony-stimulating factor (GM-CSF) as an adjunct to autologous hematopoietic stem cell transplantation for lymphoma. Ann Intern Med 116:183–189, 1992.PubMedGoogle Scholar
  73. 73.
    Guilati SC, Bennett CL: Granulocyte-macrophage colony-stimulating factor (GM-CSF) as adjunct therapy in relapsed Hodgkin’s disease. Ann Intern Med 116:117–182, 1992.Google Scholar
  74. 74.
    Greenberg P, Advani R, Keating A, et al.: GM-CSF accelerates neutrophil recovery after autologous hematopoietic stem cell transplantation. Blood, in press.Google Scholar
  75. 75.
    Nemunaitis J: Granulocyte-macrophage colony-stimulating factor: A review from the preclinical development to clinical application. Transfusion 33:70, 1993.Google Scholar
  76. 76.
    Cannistra SA, Rambaldi A, Spriggs DR, et al.: Human granulocyte-macrophage colony-stimulating factor induces expression of the tumor necrosis factor gene by the U937 cell line and by normal human monocytes. J Clin Invest 79:1720–1728, 1987.PubMedGoogle Scholar
  77. 77.
    Ho AD, Haas R, Wulf G, et al.: Activation of lymphocytes induced by recombinant human granulocyte-macrophage colony-stimulating factor in patients with malignant lymphoma. Blood 75:203–212, 1990.PubMedGoogle Scholar
  78. 78.
    Nemunaitis J, Buckner CD, Appelbaum FR, et al.: Phase I/II trial of recombinant human granulocyte-macrophage colony-stimulating factor following allogeneic bone marrow transplantation. Blood 77:2065–2071, 1991.PubMedGoogle Scholar
  79. 79.
    DeWitte T, Gratwohl A, Vanderlely N, et al.: Recombinant human granulocyte macrophage colony-stimulating factor (rhGM-CSF) reduces infection related mortality after allogeneic T-depleted bone marrow transplantation. Bone Marrow Transplant 7:83–89, 1991.Google Scholar
  80. 80.
    Powles R, Smith C, Milan S, et al.: Human recombinant GM-CSF in allogeneic bone marrow transplantation for leukemia: A double-blind, placebo-controlled trial. Lancet 336:1417–1420, 1990.PubMedGoogle Scholar
  81. 81.
    Nemunaitis J, Anasetti C, Buckner CD, et al.: Long-term followup of 103 patients who received rhGM-CSF after unrelated donor bone marrow transplant (BMT). Blood 81: 865, 1993.PubMedGoogle Scholar
  82. 82.
    Nemunaitis J, Anasetti C, Storb R, et al.: Phase II trial of recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) in patients undergoing allogeneic bone marrow transplantation from unrelated donors. Blood 79:2572–2577, 1992.PubMedGoogle Scholar
  83. 83.
    Nemunaitis J, Anasetti C, Bianco J, et al.: rhGM-CSF after allogeneic bone marrow transplant from unrelated donors: A pilot study of cyclosporine and prednisone as graft-versus-host disease prophylaxis. Leuk Lymphoma 10:177–181, 1993.PubMedGoogle Scholar
  84. 84.
    Naperstein E, Harden Y, Ven-Shaher M, et al.: Enhanced marrow recovery by short preincubation of marrow allografts with human recombinant IL-3 and GM-CSF. Blood, in press.Google Scholar
  85. 85.
    Hiraoka A, Masaoka T, Moriyama Y, et al.: A double-blind, placebo-controlled test of recombinant human nonglycosilated GM-CSF for allogeneic bone marrow transplantation. Bone Marrow Transplant, in press.Google Scholar
  86. 86.
    Chap L, Schiller G, Nimer SD: The use of recombinant GM-CSF following allogeneic bone marrow transplants for aplastic anemia. Bone Marrow Transplant, in press.Google Scholar
  87. 87.
    Nemunaitis J, Albo V, Zeigler Z, et al.: Reduction of allogeneic transplant morbidity by combining peripheral blood and bone marrow progenitor cells. Leuk Lymphoma 10:405–506, 1993.PubMedGoogle Scholar
  88. 88.
    Vowels M, Tang R, Berdoukas V, et al.: Corrections of X-linked lymphoproliferative syndrome by cord blood transplants. N Engl J Med 29:1623–1625, 1993.Google Scholar
  89. 89.
    Anasetti C, Anderson G, Appelbaum FR, et al.: Phase III study of rhGM-CSF in allogeneic marrow transplantation from unrelated donors (abstr). Blood 82(Suppl 1): 454, 1993.Google Scholar
  90. 90.
    Nemunaitis J, Rosenfeld C, Ash R, et al.: Phase III double-blind trial of rhGM-CSF (Sargramostin) following allogeneic bone marrow transplant (BMT). Blood 82(Suppl 1):286, 1993.Google Scholar
  91. 91.
    Nemunaitis J, Buckner CD, Singer JW, et al.: Use of recombinant human granulocyte-macrophage colony-stimulating factor in graft failure after bone marrow transplantation. Blood 76:245, 1990.PubMedGoogle Scholar
  92. 92.
    Biermann P, Appelbaum F, Odette D, et al.: Granulocyte-macrophage colony-stimulating factor for engraftment failure following autologous or allogeneic bone marrow transplantation. Blood 80(Suppl 1):269, 1992.Google Scholar
  93. 93.
    Klingemann HG, Eaves AC, Barnett MJ, et al.: Recombinant GM-CSF in patients with poor graft function after bone marrow transplantation. Clin Invest Med 13:77, 1990.PubMedGoogle Scholar
  94. 94.
    Vose JM, Bierman PJ, Kessinger A, et al.: The use of recombinant human granulocyte-macrophage colony stimulating factor for the treatment of delayed engraftment following high dose therapy and autologous hematopoietic stem cell transplantation for lymphoid malignancies. Bone Marrow Transplant 7:139, 1991.PubMedGoogle Scholar
  95. 95.
    Nemunaitis J: Granulocyte-macrophage colony-stimulating factors: A review of preclinical studies to clinical applications. Transfusion 33:70, 1993.Google Scholar
  96. 96.
    Sheridan WP, Morstyn G, Wolf M, et al.: Granulocyte colony-stimulating factor and neutrophil recovery after high-dose chemotherapy and autologous bone marrow transplantation. Lancet 2:891–895, 1989.PubMedGoogle Scholar
  97. 97.
    Taylor KM, Jagannath S, Spitzer G, et al.: Recombinant human granulocyte colony-stimulating factor hastens granulocyte recovery after high-dose chemotherapy and autologous bone marrow transplantation in Hodgkin’s disease. J Clin Oncol 7:1791–1799, 1989.PubMedGoogle Scholar
  98. 98.
    Peters WP: The effect of recombinant human colony-stimulating factor on hematopoietic reconstitution following autologous bone marrow transplantation. Semin Hematol 26(Suppl 2):18–23, 1989.PubMedGoogle Scholar
  99. 99.
    Auer I, Ribas A, Gale RP: What is the role of recombinant colony-stimulating factors in bone marrow transplantation. Bone Marrow Transplant 6:79–87, 1990.Google Scholar
  100. 100.
    Masaoka T, Takaku F, Kato S, et al.: Recombinant human granulocyte colony-stimulating factor in allogeneic bone marrow transplantation. Exp Hematol 17:1047–1050, 1989.PubMedGoogle Scholar
  101. 101.
    Linch DC, Scarffe H, Proctor S, et al.: A randomized vehicle controlled dose finding study of glycosylated recombinant human granulocyte colony-stimulating factor after bone marrow transplantation. Blood 77:2065–2071, 1991.Google Scholar
  102. 102.
    Schriber JR, Chao NJ, Long GD, et al.: Granulocyte colony-stimulating factor (G-CSF) following allogeneic bone marrow transplantation. Blood 84:1680–1684, 1994.PubMedGoogle Scholar
  103. 103.
    Khwaja A, Mills W, Leveridge K, et al.: Efficacy of delayed granulocyte colony-stimulating factor after autologous bone marrow transplantation. Bone Marrow Transplant, in press.Google Scholar
  104. 104.
    Motoyoshi T, Takaku F: Human monocyte colony-stimulating factor (hM-CSF), phase I/II clinical studies. In Mertelsmann R, Herrmann R (eds): Hematopoietic Growth Factors in Clinical Applications. New York: Marcel Dekker, 1990, pp 161–175.Google Scholar
  105. 105.
    Masaoka T, Motohoshi K, Takaku F, et al.: Administration of human urinary colony-stimulating factor after bone marrow transplantation. Bone Marrow Transplant 3: 121–127, 1988.PubMedGoogle Scholar
  106. 106.
    Masaoka T, Shibata H, Ohno R, et al.: Double-blind test of human urinary macrophage colony-stimulating factor for allogeneic and syngeneic bone marrow transplantation: Effectiveness of treatment and two year follow-up for relapse of leukemia. Br J Hematol 76:501–505, 1990.Google Scholar
  107. 107.
    Nemunaitis J, Meyers JD, Buckner CD, et al.: Phase I trial of recombinant human macrophage colony-stimulating factor (rhM-CSF) in patients with invasive fungal infection. Blood 78:907–913, 1991.PubMedGoogle Scholar
  108. 108.
    Nemunaitis J, Shannon-Dorcey K, Appelbaum FR: Long-term follow-up of patients with invasive fungal disease who received adjunctive therapy with recombinant human macrophage colony-stimulating factor (rhM-CSF). Blood 81:1422–1427, 1993.Google Scholar
  109. 109.
    Oster W, Schulz G: Interleukin-3: Biological and clinical effects. Int J Cell Cloning 9:5–23, 1991.PubMedGoogle Scholar
  110. 110.
    Lindemann A, Ganser A, Hermann F, et al.: Biological effects of recombinant interleukin-3 in vivo. J Clin Oncol 9:2120–2127, 1991.PubMedGoogle Scholar
  111. 111.
    Yang YC, Clark SC: Interleukin-3: Molecular biology and biological activities. Hematol Oncol Clin North Am 3:441–452, 1989.PubMedGoogle Scholar
  112. 112.
    Ganser A, Seipelt G, Lindemann A, et al.: Effect of recombinant human interleukin-3 in patients with myelodysplastic syndromes. Blood 76:455–462, 1990.PubMedGoogle Scholar
  113. 113.
    Kurzrock R, Estrov Z, Talpaz M, et al.: Interleukin-3. Am J Clin Oncol 14(Suppl 1):S45–S50, 1991.PubMedGoogle Scholar
  114. 114.
    Nemunaitis J, Appelbaum FR, Singer JW, et al.: Phase I trial with recombinant human interleukin-3 (rhIL-3) in patients with lymphoid cancer undergoing autologous bone marrow transplantation (ABMT). Blood 82:3273–3278, 1993.PubMedGoogle Scholar
  115. 115.
    Gallicchio VS, Doukas MA, Hulette BC, et al.: Protection of 3′-azido-3′-deoxythymidine induced toxicity to murine hematopoietic progenitors. (CFU-GM; BFU-E and CFU-MEG) with interleukin-1. Proc Soc Exp Biol Med 192:201–204, 1989.PubMedGoogle Scholar
  116. 116.
    Schwartz GN, Patchen ML, Neta R, et al.: Radioprotection of mice with interleukin-1: Relationship to the number of erythroid and granulocyte-macrophage colony-forming cells. Radiat Res 121:220–226, 1990.PubMedGoogle Scholar
  117. 117.
    Tewari A, Buhles WC Jr, Starnes HF Jr: Preliminary report: Effects of interleukin-1 on platelet counts. Lancet 36:1506, 1990.Google Scholar
  118. 118.
    Smith JW II, Urba WJ, Curti BD, et al.: The toxic and hematologic effects of interleukin-l∝ administered in a phase I trial to patients with advanced malignancies. J Clin Oncol 10:1141–1152, 1992.PubMedGoogle Scholar
  119. 119.
    Walsh CE, Liu JM, Anderson SM, et al.: A trial of recombinant human interleukin-1 in patients with severe refractory aplastic anemia. Br J Hematol 80:106–110, 1992.Google Scholar
  120. 120.
    Smith JW II, Longo D, Alvord W, et al.: The effects of treatment with interleukin-1 ∝ on platelet recovery after high-dose carboplatin. N Engl J Med 18:756–761, 1993.Google Scholar
  121. 121.
    Nemunaitis J, Appelbaum FR, Lilleby K: Phase I study of recombinant interleukin-1β (rhIL-1β) in patients undergoing autologous bone marrow transplant for acute myeloge-nous leukemia. Blood 83:3473–3479, 1994.PubMedGoogle Scholar
  122. 122.
    Steegmann JL, Lopez J, Otero MJ, et al.: Erythropoietin treatment in allogeneic BMT accelerates erythroid reconstitution: Results of a prospective controlled randomized trial. Bone Marrow Transplant 10:541–546, 1992.PubMedGoogle Scholar
  123. 123.
    Pene R, Appelbaum FR, Fisher L, et al.: Use of granulocyte-macrophage colony-stimulating factor and erythropoietin in combination after autologous marrow transplantation. Bone Marrow Transplant 11:219–222, 1993.PubMedGoogle Scholar
  124. 124.
    Nemunaitis J: Use of hematopoietic growth factors in marrow transplantation. Curr Opin Oncol 6:139–145, 1994.PubMedGoogle Scholar
  125. 125.
    York A, Clift RA, Sanders JE, Buckner CD: Recombinant human erythropoietin (rh-EPO) administration to normal marrow donors. Bone Marrow Transplant 10:415–417, 1992.PubMedGoogle Scholar
  126. 126.
    Miller L, Smith J, Urba W, et al.: A phase I study of an IL-3/GM-CSF fusion protein (PIXY 321) and high dose carboplatin (CBDCA) in patients with advanced cancer (abstr). Proc Am Soc Clin Oncol 12:138, 1993.Google Scholar
  127. 127.
    Williams DE, Farese A, MacVittie TJ: PIXY 321, but not GM-CSF plus IL-3, promotes hematopoietic reconstitution following lethal irradiation (abstr). Blood 82(Suppl 1): 366, 1993.Google Scholar
  128. 128.
    Matusi Y, Zsebo KM, Hogan BLM: Embryonic expression of a hematopoietic growth factor encoded by the S/ locus and the ligand for c-kit. Nature 347:667–669, 1990.Google Scholar
  129. 129.
    De Vries P, Brasel KA, Eisenman JR: The effect of recombinant mast cell growth factor on purified murine hematopoietic stem cells. J Exp Med 173:1205–1211, 1991.PubMedGoogle Scholar
  130. 130.
    Metcalf D, Nicola NA: Direct proliferation actions of stem cell factor on murine bone marrow cells in vitro: Effects of combination with colony-stimulating factors. Proc Natl Acad Sci USA 88:6239–6243, 1991.PubMedGoogle Scholar
  131. 131.
    Ulich TR, Del Castillo J, McNiece IK, et al.: Stem cell factor in combination with granulocyte colony-stimulating factor (CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF) synergistically increases granulopoiesis in vivo. Blood 78:1954–1962, 1991.PubMedGoogle Scholar
  132. 132.
    Glaspy J, McNiece I, LeMaistre F, et al.: Effects of stem cell factor (rhSCF) and filgrastim (rhG-CSF) on mobilization of peripheral blood progenitor cells (PBPC) and on hema-tological recovery posttransplant: Early results from a phase I/II study (abstr). Proc Am Soc Clin Oncol 13:68, 1994.Google Scholar
  133. 133.
    Lazarus HM, Winton EF, Williams SF, et al.: Phase I study of recombinant human interleukin-6 (rhIL-6, E. coli) after autologous bone marrow transplant (ABMT) in patients with poor-prognosis breast cancer. Blood 82(Suppl 1):173, 199•.Google Scholar
  134. 134.
    Demetri GD, Bukowsi RM, Samuels B, Gordon M, et al.: Stimulation of thrombopoiesis by recombinant human interleukin-6 (IL-6) pre-and post-chemotherapy in previously untreated sarcoma patients with normal hematopoiesis (abstr). Blood 82(Suppl 1):367, 1993.Google Scholar
  135. 135.
    Ritch PS, Schiller J, Rivkin S, et al.: Phase I evaluation of recombinant human Interleukin-6. Blood •• (Suppl 1):367, 199•.Google Scholar
  136. 136.
    Crawford J, Figlin R, Chang A, et al.: Phase I/II trial of recombinant human interleukin-6 (rhIL-6) and granulocyte colony stimulating factor (rhG-CSF) following ifosphamide, carboplatin and etoposide (ICE) chemotherapy in patients with advanced non-small cell lung carcinoma (NSCLC). Blood •• (Suppl 1):367, 199•.Google Scholar
  137. 137.
    Mull JJ, Custer MC, Travis WD, et al.: Cellular mechanisms of the antitumor activity of recombinant IL-6 in mice. J Immunol 148:2622–2629, 1992.Google Scholar
  138. 138.
    Chen L, Mory Y, Zilberstein A, et al.: Growth inhibition of human breast carcinoma and leukemia/lymphoma cell lines by recombinant interferon-B2. Proc Natl Acad Sci USA 85:8037–8041, 1988.PubMedGoogle Scholar
  139. 139.
    Revel M: Antitumour potentials of interleukin-6. Interferons Cytokines ••:5–8, 1991.Google Scholar
  140. 140.
    Gearing DP, Comeau MR, Friend DJ, et al.: The IL-6 signal transducer, gp130: An oncostatin M receptor and affinity converter for the LIF receptor. Science 255:1434–1437, 1992.PubMedGoogle Scholar
  141. 141.
    Paul SR, Hayes LL, Palmer R, et al.: Interleukin-11 expression in donor bone marrow cells improves hematological reconstitution in lethally irradiated recipient mice. Exp Hematol 22:295–301, 1994.PubMedGoogle Scholar
  142. 142.
    Du XX, Neben T, Goldman S, et al.: Effects of recombinant human interleukin-11 on hematopoietic reconstitution in transplant mice: Acceleration of recovery of peripheral blood neutrophils and platelets. Blood 81:27–34, 1993.PubMedGoogle Scholar
  143. 143.
    Meshulam DH, Blair HE, Wong BH, et al.: Purification of a lymphoid cell line product with leukocyte inhibitory factor activity. Proc Natl Acad Sci USA 79:601–605, 1982.PubMedGoogle Scholar
  144. 144.
    Williams DL, Cook JA, Hoffman EO, et al.: Protective effects of flucan in experimentally induced candidiasis. J Reticuloendoth Soc 23:4789–4790, 1978.Google Scholar
  145. 145.
    Onderdonk AB, Cisneros RL, Hinkson P, et al.: Anti-infective effect of poly B1-6 glucotriosys B1-3 glucopyranose (PPG) glucan in vivo. Infect Immun 60:1642–1647, 1992.PubMedGoogle Scholar
  146. 146.
    King AG, Talmadge JE, Badger AM, et al.: Regulation of colony-stimulating activity production from bone marrow stromal cells by the hematoregulatory peptide HP5. Exp Hematol 20:223, 1992.PubMedGoogle Scholar
  147. 147.
    Veilby OP, Lovhaug D, Fjerdingstad H, et al.: Indirect stimulation of hemopoiesis by hemoregulatory peptide (HP5b) dimer in murine long term bone marrow cultures. Exp Hematol 20:192, 1992.Google Scholar
  148. 148.
    Rice GC, Brown PA, Nelson RJ, et al.: Protection from endotoxic shock in mice by pharmacologic inhibition of phosphatidic acid. Proc Natl Acad Sci USA 91:3857–3861, 1994.PubMedGoogle Scholar
  149. 149.
    Burris H, Casto D, Gordon P, et al.: A phase I trial of CT-1501R in patients receiving therapy with thiotepa. Proc Am Soc Clin Oncol 13:159, 1993.Google Scholar
  150. 150.
    Thompson J, Nemunaitis J, Vogelzang NJ, et al.: Phase I trial of CT-1501R in cancer patients receiving high-dose Interleukin-2 (IL-2). Am Soc Clin Oncol 13:299, 1993.Google Scholar
  151. 151.
    Nemunaitis J: Perspectives of hematopoietic growth factors in transplantation. In Gorin NC (ed): Bone Marrow Transplantation and Hematopoietic Growth Factors. In press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • John Nemunaitis

There are no affiliations available

Personalised recommendations