Skip to main content

Recombinant Hematopoietic Growth Factors in Bone Marrow Transplantation

  • Chapter
Book cover Technical and Biological Components of Marrow Transplantation

Part of the book series: Cancer Treatment and Research ((CTAR,volume 76))

Abstract

Hematopoietic growth factors are naturally occurring glycoproteins that stimulate the proliferation of hematopoietic cells [1–3]. Initial discovery of hematopoietic growth factors was based on proliferative activity identified by in vitro assay systems. Erythropoietin (EPO) stimulates erythrocyte maturation, granulocyte-colony-stimulating factor (G-CSF) stimulates neutrophil proliferation, and granulocyte-macrophage-colony-stimulating factor (GM-CSF) stimulates neutrophil, monocyte, and macrophage proliferation. These three recombinant cytokines have been approved by the Food and Drug Administration (FDA) for clinical use and have been and are being evaluated in patients undergoing bone marrow or peripheral blood stem cell transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clark SC, Kamen R: The human hematopoietic colony-stimulatory factors. Science 236:1229–1237, 1987.

    PubMed  CAS  Google Scholar 

  2. Metcalf D: The granulocyte-macrophage colony-stimulating factors. Science 229:16–22, 1985.

    PubMed  CAS  Google Scholar 

  3. Singer JW, Nemunaitis J: Use of Recombinant Growth Factors in Bone Marrow Transplantation. In Forman SJ, Blume KG, Thomas ED (eds): Bone Marrow Transplantation. Cambridge, MA: Blackwell Scientific 24:309–326, 1994.

    Google Scholar 

  4. Souza LM, Boone TC, Gabrilove J, et al.: Recombinant human granulocyte colony-stimulating factors: Effects on normal and leukemic myeloid cells. Science 232: 61–65, 1986.

    PubMed  CAS  Google Scholar 

  5. Robinson BE, McGrath HE, Quesenberry PJ: Recombinant human granulocyte colony-stimulating factor has megakaryocyte colony-stimulating activity and augments megakaryocyte colony stimulation by interleukin-3. J Clin Invest 79:1648–1652, 1987.

    PubMed  CAS  Google Scholar 

  6. Williams DE, Park LS, Broxmeyer HE: Hybrid cytokines as hematopoietic growth factors. Int J Cell Cloning 9:542–547, 1991.

    PubMed  CAS  Google Scholar 

  7. Kaushansky K, Adamson JW: Interleukin-1 stimulates fiberglass to synthesize granulocyte macrophage and granulocyte colony-stimulatng factors. J Clin Invest 81:92–97, 1989.

    Google Scholar 

  8. Nemunaitis J, Andrews DF, Crittenden C, et al.: Response of simian virus 40 (SV40)-transformed, cultured human marrow stromal cells to hematopoietic growth factors. J Clin Invest 83:593–601, 1989.

    PubMed  CAS  Google Scholar 

  9. Quesenberry PJ, McGrath HE, Williams ME, et al.: Multifactor stimulation of mega-karyocytopoiesis: Effects of interleukin 6. Exp Hematol 19:35–41, 1991.

    PubMed  CAS  Google Scholar 

  10. Nemunaitis J, Andrews DF, Mochizuki DY, et al.: Human marrow stromal cells: Response to interleukin-6 (IL-6) and control of IL-6 expression. Blood 74:1929–1935, 1989.

    PubMed  CAS  Google Scholar 

  11. Leary AG, Ikebuchi K, Hirai Y, et al.: Synergism between interleukin-6 and interleukin-3 plus colony-stimulating proliferation of human hematopoietic stem cells: Comparison with interleukin-1. Exp Hematol 71:1759–1763, 1989.

    Google Scholar 

  12. Bartelmez SH, Bardley TR, Bertoncello I, et al.: Interleukin-1 plus interleukin-3 plus colony-stimulating factor-1 are essential for clonal proliferation of primitive myeloid bone marrow cells. Exp Hematol 17:240–245, 1989.

    PubMed  CAS  Google Scholar 

  13. Broxmeyer HE, Williams DE, Lu L, et al.: The suppressive influences of human tumor necrosis factors on bone marrow hematopoietic progenitor cells from normal donors and patients with leukemia: Synergies among human necrosis factor and interferon gamma. J Clin Immunol 136:4487–4495, 1986.

    CAS  Google Scholar 

  14. Sing GK, Keller JR, Ellingsworth LR, et al.: Transforming growth factor beta selectively inhibits normal and leukemic bone marrow cell growth in vitro. Blood 72:1504, 1988.

    PubMed  CAS  Google Scholar 

  15. Caux C, Saeland S, Favre C, et al.: TNF-∝ strongly potentiates IL-3 and GM-CSF induced proliferation of human CD34+ hematopoietic progenitor cells. Blood 71:2292–2298, 1990.

    Google Scholar 

  16. Muench MO, Schneider G, Moore MAS: Interactions among colony-stimulatory factors; IL-Iβ, IL-6 and kit ligand in the regulation of primitive hematopoietic cells. Exp Hematol 20:339–349, 1992.

    PubMed  CAS  Google Scholar 

  17. Ogawa M, Clark SC: Synergistic interaction between interleukin-6 and interleukin-3 in support of stem cell proliferation in culture. Blood Cells 14:329–337, 1988.

    PubMed  CAS  Google Scholar 

  18. Ikebuchi K, Ihle JN, Hirai Y, et al.: Synergistic factors for stem cell proliferation: Further studies of the target stem cells and the mechanism of stimulation by interleukin-1; interleukin-6; and granulocyte colony-stimulating factor. Blood 72:2007–2014, 1988.

    PubMed  CAS  Google Scholar 

  19. Bussolino F, Wang JM, Defilippi P, et al.: Granulocyte and granulocyte macrophage colony-stimulating factors induce human endothelial cells to migrate and proliferate. Nature 337:471–473, 1989.

    PubMed  CAS  Google Scholar 

  20. Nemunaitis J: Macrophage function activating cytokines: Potential clinical applications. Crit Rev Oncol Hematol 14:153–171, 1993.

    PubMed  CAS  Google Scholar 

  21. Onderdonk AB, Cisneros RL, Hinkson P, et al.: Anti-infective effect of ply Bl-6 flucotriosys Bl-3 glucopyranose (PPG) glucan in vivo. Infect Immun 60:1642–1647, 1992.

    PubMed  CAS  Google Scholar 

  22. Pelus LM, King AG, Broxmeyer HE: In vivo modulation of hematopoiesis by a novel hematoregulatory peptide. Exp Hematol 22:239–247, 1994.

    PubMed  CAS  Google Scholar 

  23. Blanchard DK, Michelini-Norris MB, Pearson CA, et al.: Production of granulocyte macrophage colony-stimulating factor (GM-CSF) by monocytes and large granular lymphocytes stimulated with Mycobacterium avium intracellulazre: Activation of bacteriocidal activity by GM-CSF. Infect Immun 59:2396–2402, 1991.

    PubMed  CAS  Google Scholar 

  24. Roilides E, Walsh TJ, Pizzo PA, et al.: Granulocyte colony-stimulating factor enhances the phagocytic and bactericidal activity of normal and defective human neutrophils. J Infect Dis 163:579–583, 1991.

    PubMed  CAS  Google Scholar 

  25. Bober LA, Grace MJ, Pugliese-Sivo C, et al.: The effect of GM-CSF and G-CSF on human neutrophil function. Immunopharm 29:111–195, 1995.

    CAS  Google Scholar 

  26. Masuda A, et al.: Induction of mitochondrial manganese Superoxide dismutase by interleukin-1. FASEB J 2:3087–3091, 1988.

    PubMed  CAS  Google Scholar 

  27. Fabian I, Baldwin GC, Golde DW: Biosynthetic granulocyte macrophage colony-stimulating factor enhances neutrophil cytotoxicity toward human leukemia cells. Leukemia 1:613–617, 1987.

    PubMed  CAS  Google Scholar 

  28. Hoang T, Haman A, Goncalves O, et al.: Interleukin-1 enhances growth factor proliferation of the clonogenic cells in acute myeloblastic leukemia and of normal human primitive hematopoietic precursors. J Exp Med 168:463–474, 1988.

    PubMed  CAS  Google Scholar 

  29. Zsebo KM, Wypych J, McNiece IK, et al.: Identification, purification and biological characterization of hematopoietic stem cell factor from buffalo rat liver-conditioned medium. Cell 63:195–201, 1990.

    PubMed  CAS  Google Scholar 

  30. DiPersio JF, Reading C, Deisseroth A, et al.: SCF converts GM-CSF/IL-3 unresponsive and receptor negative AML cells to IL-3/GM-CSF responsive cells in vitro (abstr). Blood 78(Suppl 1):270, 1991.

    Google Scholar 

  31. Cohen AM, Zsebo KM, Inou H, et al.: In vivo stimulation of granulopoiesis by recombinant human granulocyte colony-stimulating factor. Proc Natl Acad Sci USA 84: 2484–2488, 1987.

    PubMed  CAS  Google Scholar 

  32. Nienhuis AW, Donahue RE, Karisson S, et al.: Recombinant human granulocyte macrophage colony-stimulating factor (GM-CSF) shortens the period of neutropenia after autologous bone marrow transplantation in a primate model. J Clin Invest 80:573–577, 1987.

    PubMed  CAS  Google Scholar 

  33. Oppenheim JJ, Neta R, Tiberghien P, et al.: Interleukin-1 enhances survival of lethally irradiated mice treated with allogeneic bone marrow cells. Blood 74:2257–2263, 1989.

    PubMed  CAS  Google Scholar 

  34. Gillio AP, Gasparetto C, Laver J, et al.: Effects of interleukin-3 on hematopoietic recovery after 5 fluorouracil or cyclophosphamide treatment of cynomolgus primates. J Clin Invest 85:1560–1565, 1990.

    PubMed  CAS  Google Scholar 

  35. Andrews RG, Knitter GH, Bartelmez SH, et al.: Recombinant human stem cell factor, a c-kit ligand, stimulates hematopoiesis in primates. Blood 78:1975–1980, 1991.

    PubMed  CAS  Google Scholar 

  36. Ishibashi T, Kimura H, Shikama Y, et al.: Interleukin-6 is a potent thrombopoietic factor in vivo in mice. Blood 74:1241–1244, 1991.

    Google Scholar 

  37. Musashi M, Clark SC, Sudo T, Urdal D, Ogawa M: Synergistic interaction between interleukin-11 and interleukin-4 in support of proliferation of primitive hematopoietic progenitors of mice. Blood 78:144–1451, 1991.

    Google Scholar 

  38. Asabi S, Okano A, Ozawa K, et al.: In vivo effects of recombinant human interleukin-6 in primates: Stimulated production of platelets. Blood 75:1602–1605, 1990.

    Google Scholar 

  39. Mayer P, Gissler K, Valent P, et al.: Recombinant human interleukin-6 is a potent inducer of the acute phase response and elevates the blood platelets in nonhuman primates. Exp Hematol 19:688–696, 1991.

    PubMed  CAS  Google Scholar 

  40. Frenck TW, Sarman G, Harper TE, et al.: The ability of recombinant murine granulocyte macrophage colony-stimulating factor to protect neonatal rats from septic death due to Staphylococcus aureus. J Infect Dis 162:109–114, 1990.

    PubMed  CAS  Google Scholar 

  41. Cenci E, Bartocci A, Puccetti P, et al.: Macrophage colony-stimulating factor in murine candidiasis: Serum and tissue levels during infection and protective effect of exogenous administration. Infect Immun 59:868–872, 1991.

    PubMed  CAS  Google Scholar 

  42. Bermudez LE, Martinelli JC, Gascon R: Protection against gram-negative bacteremia in neutropenic mice with recombinant granulocyte-macrophage colony-stimulating factor. Cytokine 2:287–293, 1990.

    PubMed  CAS  Google Scholar 

  43. Mayer P, Schultz E, Lam C: Recombinant human granulocyte-macrophage, colony-stimulating factor augments neutrophil recovery and enhances resistance to infections in myelosuppressed mice. J Infect Dis 163:584–590, 1991.

    PubMed  CAS  Google Scholar 

  44. Wang M, Friedman HD, Jeu JY: Enhancement of human monocyte function against Candida albicans by the colony-stimulating factors (CSF): IL-3, granulocyte macrophage-CSF, and macrophage-CSF. J Immunol 143:671–677, 1989.

    PubMed  CAS  Google Scholar 

  45. Motoyoshi K, Takaku F, Maekawa T, et al.: Protective effect of partially purified urinary colony-stimulating factor on granulocytopenia after antitumor chemotherapy. Exp Hematol 14:1069–1075, 1986.

    PubMed  CAS  Google Scholar 

  46. Lee MT, Warren MK: CSF-1 induced resistance to viral infection in mucin macrophages. J Immunol 138:3019–3022, 1987.

    PubMed  CAS  Google Scholar 

  47. Donahue RE, Seehra J, Metzger M, et al.: Human IL-3 and GM-CSF act synergistically in stimulating hematopoiesis in primates. Science 241:1820–1823, 1988.

    PubMed  CAS  Google Scholar 

  48. Krumwieh D, Seiler FR: In vivo effects of recombinant colony-stimulating factors on hematopoiesis in cynomolgus monkeys. Transplant Proc 21:2964–2967, 1989.

    PubMed  CAS  Google Scholar 

  49. Mayer P, Valent P, Schmidt G, et al.: The in vivo effects of recombinant human interleukin-3: Demonstration of basophil differentiation factor, histamine-producing activity and priming of GM-CSF-responsive progenitors in human primates. Blood 74: 613–621, 1989.

    PubMed  CAS  Google Scholar 

  50. Blazar BR, Widmer MB, Soderling CB, et al.: Augmentation of donor bone marrow engraftment in histoincompatible murine recipients by granulocyte-macrophage colony-stimulating factor. Blood 71:320–328, 1988.

    PubMed  CAS  Google Scholar 

  51. Blazar BR, Widmer MB, Cosman D, et al.: Improved survival and leukocyte reconstitution without detrimental effects on engraftment in murine recipients of human recombinant granulocyte colony-stimulating factor after transplantation of T-cell depleted histoincompatible bone marrow. Blood 74:2264–2269, 1989.

    PubMed  CAS  Google Scholar 

  52. Atkinson K, Matias C, Guiffre A, et al.: In vivo administration of granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-1 (IL-1), and IL-4 alone and in combination, after allogeneic murine hematopoietic stem cell transplantation. Blood 77:1376–1382, 1991.

    PubMed  CAS  Google Scholar 

  53. Pojda Z, Molineux G, Dexter TM: Effects of long term in vivo treatment of mice with purified murine recombinant GM-CSF. Exp Hematol 17:1100–1104, 1989.

    PubMed  CAS  Google Scholar 

  54. Lang RA, Metcalf D, Cuthberston RA, et al.: Transgenic mice expressing hematopoietic growth factor gene (GM-CSF) develop accumulations of macrophages, blindness, and a fatal syndrome of tissue damage. Cell 51:675–686, 1987.

    PubMed  CAS  Google Scholar 

  55. Schuening FG, Storb R, Goehle S, et al.: Recombinant human granulocyte colony-stimulating factor accelerates recovery after DLA-identical littermate marrow transplants in dogs. Blood 76:636–640, 1990.

    PubMed  CAS  Google Scholar 

  56. Schuening FG, Storb R, Goehle S, et al.: Effect of recombinant human granulocyte colony-stimulating factor on hematopoiesis of normal dogs and on hematopoietic recovery after otherwise lethal total body irradiation. Blood 74:1308–1313, 1989.

    PubMed  CAS  Google Scholar 

  57. Oppenheim JJ, Neta R, Tiberghien P, et al.: Interleukin-1 enhances survival of lethally irradiated mice treated with allogeneic bone marrow cells. Blood 74:2257–2263, 1989.

    PubMed  CAS  Google Scholar 

  58. Brandt SJ, Peters WP, Atwater SK, et al.: Effect of recombinant human granulocyte-macrophage colony-stimulating factor on hematopoietic reconstitution after high-dose chemotherapy and autologous bone marrow transplantation. N Engl J Med 318: 869–876, 1988.

    PubMed  CAS  Google Scholar 

  59. Nemunaitis J, Singer JW, Buckner CD, et al.: Use of recombinant human granulocyte-macrophage colony-stimulating factor in autologous bone marrow transplantation for lymphoid malignancies. Blood 72:834–836, 1988.

    PubMed  CAS  Google Scholar 

  60. Nemunaitis J, Singer JW, Buckner CD, et al.: Use of recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF) in autologous marrow transplantation for lymphoid malignancies. In Dicke KA (ed): Autologous Bone Marrow Transplantation: Procedures of the Third International Symposium. Houston: University of Houston, 1989, pp 631–636.

    Google Scholar 

  61. Devereaux S, Linch DC, Gribben JG, et al.: GM-CSF accelerates neutrophil recovery after autologous bone marrow transplantation for Hodgkin’s disease. Bone Marrow Transplant 4:49–54, 1989.

    PubMed  CAS  Google Scholar 

  62. Blazar BR, Kersey JH, McGlave PB, et al.: In vivo administration of recombinant human granulocyte-macrophage colony-stimulating factor in acute lymphoblastic leukemia patients receiving purged autografts. Blood 73:849–857, 1989.

    PubMed  CAS  Google Scholar 

  63. Link H, Freund M, Kirchner H, et al.: Recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) after bone marrow transplantation. Behring Inst Mitt 83:313–319, 1988.

    PubMed  Google Scholar 

  64. Lazarus HM, Coiffer B, Hyatt M, et al.: rhuGM-CSF shortens aplasia after autologous bone marrow transplantion for relapsed non-Hodgkin’s lymphoma: Blood and bone marrow progenitor growth studies: A phase II Eastern Cooperative Oncology Group Trial. Blood 78:830–837, 1991.

    PubMed  CAS  Google Scholar 

  65. DeWitte T, Gratwohl A, Vanderlely N, et al.: Recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) reduces infection related mortality after allogeneic T-depleted bone marrow transplantation. Bone Marrow Transplant 7:83–89, 1991.

    Google Scholar 

  66. O’Day SJ, Rabinowe SN, Neuberg D, et al.: A phase II study of continuous infusion recombinant human granulocyte macrophage colony-stimulating factor as an adjunct to autologous bone marrow transplantation for patients with non-Hodgkin’s lymphoma in first remission. Blood 83:2707–2714, 1994.

    PubMed  Google Scholar 

  67. Nemunaitis J, Singer JW, Buckner CD, et al.: Long-term follow-up of patients who received recombinant human granulocyte-macrophage colony-stimulating factor after autologous bone marrow transplantation for lymphoid malignancy. Bone Marrow Transplant 7:49–52, 1991.

    PubMed  CAS  Google Scholar 

  68. Nemunaitis J, Rabinower SN, Singer JW, et al.: Recombinant granulocyte-macrophage colony-stimulating factor after autologous bone marrow transplantation for lymphoid cancer. N Engl J Med 324:1773–1778, 1991.

    PubMed  CAS  Google Scholar 

  69. Rabinowe SN, Nemunaitis J, Armitage J, et al.: The impact of myeloid growth factors on engraftment following autologous bone marrow transplantation for malignant lymphoma. Semin Hematol 28(Suppl 2):6–16, 1991.

    PubMed  CAS  Google Scholar 

  70. Gorin NC, Coiffier B, Hayat M, et al.: rhuGM-CSF shortens aplasia duration after ABMT in non-Hodgkin’s lymphoma: A randomized placebo-controlled double-blind study. Bone Marrow Transplant 7(Suppl 2):82, 1991.

    PubMed  Google Scholar 

  71. Visani G, Gamberi B, Greenberg P, et al.: The use of GM-CSF as an adjunct to autologous/syngeneic bone marrow transplantation: A prospective randomized controlled trial. Bone Marrow Transplant 7(Suppl 2):81, 1991.

    PubMed  Google Scholar 

  72. Advani R, Chao NJ, Horning SJ, et al.: Granulocyte-macrophage colony-stimulating factor (GM-CSF) as an adjunct to autologous hematopoietic stem cell transplantation for lymphoma. Ann Intern Med 116:183–189, 1992.

    PubMed  CAS  Google Scholar 

  73. Guilati SC, Bennett CL: Granulocyte-macrophage colony-stimulating factor (GM-CSF) as adjunct therapy in relapsed Hodgkin’s disease. Ann Intern Med 116:117–182, 1992.

    Google Scholar 

  74. Greenberg P, Advani R, Keating A, et al.: GM-CSF accelerates neutrophil recovery after autologous hematopoietic stem cell transplantation. Blood, in press.

    Google Scholar 

  75. Nemunaitis J: Granulocyte-macrophage colony-stimulating factor: A review from the preclinical development to clinical application. Transfusion 33:70, 1993.

    Google Scholar 

  76. Cannistra SA, Rambaldi A, Spriggs DR, et al.: Human granulocyte-macrophage colony-stimulating factor induces expression of the tumor necrosis factor gene by the U937 cell line and by normal human monocytes. J Clin Invest 79:1720–1728, 1987.

    PubMed  CAS  Google Scholar 

  77. Ho AD, Haas R, Wulf G, et al.: Activation of lymphocytes induced by recombinant human granulocyte-macrophage colony-stimulating factor in patients with malignant lymphoma. Blood 75:203–212, 1990.

    PubMed  CAS  Google Scholar 

  78. Nemunaitis J, Buckner CD, Appelbaum FR, et al.: Phase I/II trial of recombinant human granulocyte-macrophage colony-stimulating factor following allogeneic bone marrow transplantation. Blood 77:2065–2071, 1991.

    PubMed  CAS  Google Scholar 

  79. DeWitte T, Gratwohl A, Vanderlely N, et al.: Recombinant human granulocyte macrophage colony-stimulating factor (rhGM-CSF) reduces infection related mortality after allogeneic T-depleted bone marrow transplantation. Bone Marrow Transplant 7:83–89, 1991.

    Google Scholar 

  80. Powles R, Smith C, Milan S, et al.: Human recombinant GM-CSF in allogeneic bone marrow transplantation for leukemia: A double-blind, placebo-controlled trial. Lancet 336:1417–1420, 1990.

    PubMed  CAS  Google Scholar 

  81. Nemunaitis J, Anasetti C, Buckner CD, et al.: Long-term followup of 103 patients who received rhGM-CSF after unrelated donor bone marrow transplant (BMT). Blood 81: 865, 1993.

    PubMed  CAS  Google Scholar 

  82. Nemunaitis J, Anasetti C, Storb R, et al.: Phase II trial of recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) in patients undergoing allogeneic bone marrow transplantation from unrelated donors. Blood 79:2572–2577, 1992.

    PubMed  CAS  Google Scholar 

  83. Nemunaitis J, Anasetti C, Bianco J, et al.: rhGM-CSF after allogeneic bone marrow transplant from unrelated donors: A pilot study of cyclosporine and prednisone as graft-versus-host disease prophylaxis. Leuk Lymphoma 10:177–181, 1993.

    PubMed  CAS  Google Scholar 

  84. Naperstein E, Harden Y, Ven-Shaher M, et al.: Enhanced marrow recovery by short preincubation of marrow allografts with human recombinant IL-3 and GM-CSF. Blood, in press.

    Google Scholar 

  85. Hiraoka A, Masaoka T, Moriyama Y, et al.: A double-blind, placebo-controlled test of recombinant human nonglycosilated GM-CSF for allogeneic bone marrow transplantation. Bone Marrow Transplant, in press.

    Google Scholar 

  86. Chap L, Schiller G, Nimer SD: The use of recombinant GM-CSF following allogeneic bone marrow transplants for aplastic anemia. Bone Marrow Transplant, in press.

    Google Scholar 

  87. Nemunaitis J, Albo V, Zeigler Z, et al.: Reduction of allogeneic transplant morbidity by combining peripheral blood and bone marrow progenitor cells. Leuk Lymphoma 10:405–506, 1993.

    PubMed  CAS  Google Scholar 

  88. Vowels M, Tang R, Berdoukas V, et al.: Corrections of X-linked lymphoproliferative syndrome by cord blood transplants. N Engl J Med 29:1623–1625, 1993.

    Google Scholar 

  89. Anasetti C, Anderson G, Appelbaum FR, et al.: Phase III study of rhGM-CSF in allogeneic marrow transplantation from unrelated donors (abstr). Blood 82(Suppl 1): 454, 1993.

    Google Scholar 

  90. Nemunaitis J, Rosenfeld C, Ash R, et al.: Phase III double-blind trial of rhGM-CSF (Sargramostin) following allogeneic bone marrow transplant (BMT). Blood 82(Suppl 1):286, 1993.

    Google Scholar 

  91. Nemunaitis J, Buckner CD, Singer JW, et al.: Use of recombinant human granulocyte-macrophage colony-stimulating factor in graft failure after bone marrow transplantation. Blood 76:245, 1990.

    PubMed  CAS  Google Scholar 

  92. Biermann P, Appelbaum F, Odette D, et al.: Granulocyte-macrophage colony-stimulating factor for engraftment failure following autologous or allogeneic bone marrow transplantation. Blood 80(Suppl 1):269, 1992.

    Google Scholar 

  93. Klingemann HG, Eaves AC, Barnett MJ, et al.: Recombinant GM-CSF in patients with poor graft function after bone marrow transplantation. Clin Invest Med 13:77, 1990.

    PubMed  CAS  Google Scholar 

  94. Vose JM, Bierman PJ, Kessinger A, et al.: The use of recombinant human granulocyte-macrophage colony stimulating factor for the treatment of delayed engraftment following high dose therapy and autologous hematopoietic stem cell transplantation for lymphoid malignancies. Bone Marrow Transplant 7:139, 1991.

    PubMed  CAS  Google Scholar 

  95. Nemunaitis J: Granulocyte-macrophage colony-stimulating factors: A review of preclinical studies to clinical applications. Transfusion 33:70, 1993.

    Google Scholar 

  96. Sheridan WP, Morstyn G, Wolf M, et al.: Granulocyte colony-stimulating factor and neutrophil recovery after high-dose chemotherapy and autologous bone marrow transplantation. Lancet 2:891–895, 1989.

    PubMed  CAS  Google Scholar 

  97. Taylor KM, Jagannath S, Spitzer G, et al.: Recombinant human granulocyte colony-stimulating factor hastens granulocyte recovery after high-dose chemotherapy and autologous bone marrow transplantation in Hodgkin’s disease. J Clin Oncol 7:1791–1799, 1989.

    PubMed  CAS  Google Scholar 

  98. Peters WP: The effect of recombinant human colony-stimulating factor on hematopoietic reconstitution following autologous bone marrow transplantation. Semin Hematol 26(Suppl 2):18–23, 1989.

    PubMed  CAS  Google Scholar 

  99. Auer I, Ribas A, Gale RP: What is the role of recombinant colony-stimulating factors in bone marrow transplantation. Bone Marrow Transplant 6:79–87, 1990.

    Google Scholar 

  100. Masaoka T, Takaku F, Kato S, et al.: Recombinant human granulocyte colony-stimulating factor in allogeneic bone marrow transplantation. Exp Hematol 17:1047–1050, 1989.

    PubMed  CAS  Google Scholar 

  101. Linch DC, Scarffe H, Proctor S, et al.: A randomized vehicle controlled dose finding study of glycosylated recombinant human granulocyte colony-stimulating factor after bone marrow transplantation. Blood 77:2065–2071, 1991.

    Google Scholar 

  102. Schriber JR, Chao NJ, Long GD, et al.: Granulocyte colony-stimulating factor (G-CSF) following allogeneic bone marrow transplantation. Blood 84:1680–1684, 1994.

    PubMed  CAS  Google Scholar 

  103. Khwaja A, Mills W, Leveridge K, et al.: Efficacy of delayed granulocyte colony-stimulating factor after autologous bone marrow transplantation. Bone Marrow Transplant, in press.

    Google Scholar 

  104. Motoyoshi T, Takaku F: Human monocyte colony-stimulating factor (hM-CSF), phase I/II clinical studies. In Mertelsmann R, Herrmann R (eds): Hematopoietic Growth Factors in Clinical Applications. New York: Marcel Dekker, 1990, pp 161–175.

    Google Scholar 

  105. Masaoka T, Motohoshi K, Takaku F, et al.: Administration of human urinary colony-stimulating factor after bone marrow transplantation. Bone Marrow Transplant 3: 121–127, 1988.

    PubMed  CAS  Google Scholar 

  106. Masaoka T, Shibata H, Ohno R, et al.: Double-blind test of human urinary macrophage colony-stimulating factor for allogeneic and syngeneic bone marrow transplantation: Effectiveness of treatment and two year follow-up for relapse of leukemia. Br J Hematol 76:501–505, 1990.

    CAS  Google Scholar 

  107. Nemunaitis J, Meyers JD, Buckner CD, et al.: Phase I trial of recombinant human macrophage colony-stimulating factor (rhM-CSF) in patients with invasive fungal infection. Blood 78:907–913, 1991.

    PubMed  CAS  Google Scholar 

  108. Nemunaitis J, Shannon-Dorcey K, Appelbaum FR: Long-term follow-up of patients with invasive fungal disease who received adjunctive therapy with recombinant human macrophage colony-stimulating factor (rhM-CSF). Blood 81:1422–1427, 1993.

    Google Scholar 

  109. Oster W, Schulz G: Interleukin-3: Biological and clinical effects. Int J Cell Cloning 9:5–23, 1991.

    PubMed  CAS  Google Scholar 

  110. Lindemann A, Ganser A, Hermann F, et al.: Biological effects of recombinant interleukin-3 in vivo. J Clin Oncol 9:2120–2127, 1991.

    PubMed  CAS  Google Scholar 

  111. Yang YC, Clark SC: Interleukin-3: Molecular biology and biological activities. Hematol Oncol Clin North Am 3:441–452, 1989.

    PubMed  CAS  Google Scholar 

  112. Ganser A, Seipelt G, Lindemann A, et al.: Effect of recombinant human interleukin-3 in patients with myelodysplastic syndromes. Blood 76:455–462, 1990.

    PubMed  CAS  Google Scholar 

  113. Kurzrock R, Estrov Z, Talpaz M, et al.: Interleukin-3. Am J Clin Oncol 14(Suppl 1):S45–S50, 1991.

    PubMed  Google Scholar 

  114. Nemunaitis J, Appelbaum FR, Singer JW, et al.: Phase I trial with recombinant human interleukin-3 (rhIL-3) in patients with lymphoid cancer undergoing autologous bone marrow transplantation (ABMT). Blood 82:3273–3278, 1993.

    PubMed  CAS  Google Scholar 

  115. Gallicchio VS, Doukas MA, Hulette BC, et al.: Protection of 3′-azido-3′-deoxythymidine induced toxicity to murine hematopoietic progenitors. (CFU-GM; BFU-E and CFU-MEG) with interleukin-1. Proc Soc Exp Biol Med 192:201–204, 1989.

    PubMed  CAS  Google Scholar 

  116. Schwartz GN, Patchen ML, Neta R, et al.: Radioprotection of mice with interleukin-1: Relationship to the number of erythroid and granulocyte-macrophage colony-forming cells. Radiat Res 121:220–226, 1990.

    PubMed  CAS  Google Scholar 

  117. Tewari A, Buhles WC Jr, Starnes HF Jr: Preliminary report: Effects of interleukin-1 on platelet counts. Lancet 36:1506, 1990.

    Google Scholar 

  118. Smith JW II, Urba WJ, Curti BD, et al.: The toxic and hematologic effects of interleukin-l∝ administered in a phase I trial to patients with advanced malignancies. J Clin Oncol 10:1141–1152, 1992.

    PubMed  Google Scholar 

  119. Walsh CE, Liu JM, Anderson SM, et al.: A trial of recombinant human interleukin-1 in patients with severe refractory aplastic anemia. Br J Hematol 80:106–110, 1992.

    CAS  Google Scholar 

  120. Smith JW II, Longo D, Alvord W, et al.: The effects of treatment with interleukin-1 ∝ on platelet recovery after high-dose carboplatin. N Engl J Med 18:756–761, 1993.

    Google Scholar 

  121. Nemunaitis J, Appelbaum FR, Lilleby K: Phase I study of recombinant interleukin-1β (rhIL-1β) in patients undergoing autologous bone marrow transplant for acute myeloge-nous leukemia. Blood 83:3473–3479, 1994.

    PubMed  CAS  Google Scholar 

  122. Steegmann JL, Lopez J, Otero MJ, et al.: Erythropoietin treatment in allogeneic BMT accelerates erythroid reconstitution: Results of a prospective controlled randomized trial. Bone Marrow Transplant 10:541–546, 1992.

    PubMed  CAS  Google Scholar 

  123. Pene R, Appelbaum FR, Fisher L, et al.: Use of granulocyte-macrophage colony-stimulating factor and erythropoietin in combination after autologous marrow transplantation. Bone Marrow Transplant 11:219–222, 1993.

    PubMed  CAS  Google Scholar 

  124. Nemunaitis J: Use of hematopoietic growth factors in marrow transplantation. Curr Opin Oncol 6:139–145, 1994.

    PubMed  CAS  Google Scholar 

  125. York A, Clift RA, Sanders JE, Buckner CD: Recombinant human erythropoietin (rh-EPO) administration to normal marrow donors. Bone Marrow Transplant 10:415–417, 1992.

    PubMed  CAS  Google Scholar 

  126. Miller L, Smith J, Urba W, et al.: A phase I study of an IL-3/GM-CSF fusion protein (PIXY 321) and high dose carboplatin (CBDCA) in patients with advanced cancer (abstr). Proc Am Soc Clin Oncol 12:138, 1993.

    Google Scholar 

  127. Williams DE, Farese A, MacVittie TJ: PIXY 321, but not GM-CSF plus IL-3, promotes hematopoietic reconstitution following lethal irradiation (abstr). Blood 82(Suppl 1): 366, 1993.

    Google Scholar 

  128. Matusi Y, Zsebo KM, Hogan BLM: Embryonic expression of a hematopoietic growth factor encoded by the S/ locus and the ligand for c-kit. Nature 347:667–669, 1990.

    Google Scholar 

  129. De Vries P, Brasel KA, Eisenman JR: The effect of recombinant mast cell growth factor on purified murine hematopoietic stem cells. J Exp Med 173:1205–1211, 1991.

    PubMed  Google Scholar 

  130. Metcalf D, Nicola NA: Direct proliferation actions of stem cell factor on murine bone marrow cells in vitro: Effects of combination with colony-stimulating factors. Proc Natl Acad Sci USA 88:6239–6243, 1991.

    PubMed  CAS  Google Scholar 

  131. Ulich TR, Del Castillo J, McNiece IK, et al.: Stem cell factor in combination with granulocyte colony-stimulating factor (CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF) synergistically increases granulopoiesis in vivo. Blood 78:1954–1962, 1991.

    PubMed  CAS  Google Scholar 

  132. Glaspy J, McNiece I, LeMaistre F, et al.: Effects of stem cell factor (rhSCF) and filgrastim (rhG-CSF) on mobilization of peripheral blood progenitor cells (PBPC) and on hema-tological recovery posttransplant: Early results from a phase I/II study (abstr). Proc Am Soc Clin Oncol 13:68, 1994.

    Google Scholar 

  133. Lazarus HM, Winton EF, Williams SF, et al.: Phase I study of recombinant human interleukin-6 (rhIL-6, E. coli) after autologous bone marrow transplant (ABMT) in patients with poor-prognosis breast cancer. Blood 82(Suppl 1):173, 199•.

    Google Scholar 

  134. Demetri GD, Bukowsi RM, Samuels B, Gordon M, et al.: Stimulation of thrombopoiesis by recombinant human interleukin-6 (IL-6) pre-and post-chemotherapy in previously untreated sarcoma patients with normal hematopoiesis (abstr). Blood 82(Suppl 1):367, 1993.

    Google Scholar 

  135. Ritch PS, Schiller J, Rivkin S, et al.: Phase I evaluation of recombinant human Interleukin-6. Blood •• (Suppl 1):367, 199•.

    Google Scholar 

  136. Crawford J, Figlin R, Chang A, et al.: Phase I/II trial of recombinant human interleukin-6 (rhIL-6) and granulocyte colony stimulating factor (rhG-CSF) following ifosphamide, carboplatin and etoposide (ICE) chemotherapy in patients with advanced non-small cell lung carcinoma (NSCLC). Blood •• (Suppl 1):367, 199•.

    Google Scholar 

  137. Mull JJ, Custer MC, Travis WD, et al.: Cellular mechanisms of the antitumor activity of recombinant IL-6 in mice. J Immunol 148:2622–2629, 1992.

    Google Scholar 

  138. Chen L, Mory Y, Zilberstein A, et al.: Growth inhibition of human breast carcinoma and leukemia/lymphoma cell lines by recombinant interferon-B2. Proc Natl Acad Sci USA 85:8037–8041, 1988.

    PubMed  CAS  Google Scholar 

  139. Revel M: Antitumour potentials of interleukin-6. Interferons Cytokines ••:5–8, 1991.

    Google Scholar 

  140. Gearing DP, Comeau MR, Friend DJ, et al.: The IL-6 signal transducer, gp130: An oncostatin M receptor and affinity converter for the LIF receptor. Science 255:1434–1437, 1992.

    PubMed  CAS  Google Scholar 

  141. Paul SR, Hayes LL, Palmer R, et al.: Interleukin-11 expression in donor bone marrow cells improves hematological reconstitution in lethally irradiated recipient mice. Exp Hematol 22:295–301, 1994.

    PubMed  CAS  Google Scholar 

  142. Du XX, Neben T, Goldman S, et al.: Effects of recombinant human interleukin-11 on hematopoietic reconstitution in transplant mice: Acceleration of recovery of peripheral blood neutrophils and platelets. Blood 81:27–34, 1993.

    PubMed  CAS  Google Scholar 

  143. Meshulam DH, Blair HE, Wong BH, et al.: Purification of a lymphoid cell line product with leukocyte inhibitory factor activity. Proc Natl Acad Sci USA 79:601–605, 1982.

    PubMed  CAS  Google Scholar 

  144. Williams DL, Cook JA, Hoffman EO, et al.: Protective effects of flucan in experimentally induced candidiasis. J Reticuloendoth Soc 23:4789–4790, 1978.

    Google Scholar 

  145. Onderdonk AB, Cisneros RL, Hinkson P, et al.: Anti-infective effect of poly B1-6 glucotriosys B1-3 glucopyranose (PPG) glucan in vivo. Infect Immun 60:1642–1647, 1992.

    PubMed  CAS  Google Scholar 

  146. King AG, Talmadge JE, Badger AM, et al.: Regulation of colony-stimulating activity production from bone marrow stromal cells by the hematoregulatory peptide HP5. Exp Hematol 20:223, 1992.

    PubMed  CAS  Google Scholar 

  147. Veilby OP, Lovhaug D, Fjerdingstad H, et al.: Indirect stimulation of hemopoiesis by hemoregulatory peptide (HP5b) dimer in murine long term bone marrow cultures. Exp Hematol 20:192, 1992.

    Google Scholar 

  148. Rice GC, Brown PA, Nelson RJ, et al.: Protection from endotoxic shock in mice by pharmacologic inhibition of phosphatidic acid. Proc Natl Acad Sci USA 91:3857–3861, 1994.

    PubMed  CAS  Google Scholar 

  149. Burris H, Casto D, Gordon P, et al.: A phase I trial of CT-1501R in patients receiving therapy with thiotepa. Proc Am Soc Clin Oncol 13:159, 1993.

    Google Scholar 

  150. Thompson J, Nemunaitis J, Vogelzang NJ, et al.: Phase I trial of CT-1501R in cancer patients receiving high-dose Interleukin-2 (IL-2). Am Soc Clin Oncol 13:299, 1993.

    Google Scholar 

  151. Nemunaitis J: Perspectives of hematopoietic growth factors in transplantation. In Gorin NC (ed): Bone Marrow Transplantation and Hematopoietic Growth Factors. In press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nemunaitis, J. (1995). Recombinant Hematopoietic Growth Factors in Bone Marrow Transplantation. In: Buckner, C.D., Clift, R.A. (eds) Technical and Biological Components of Marrow Transplantation. Cancer Treatment and Research, vol 76. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2013-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2013-9_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5832-9

  • Online ISBN: 978-1-4615-2013-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics