Skip to main content

Cardiac Extracellular Matrix and its Role in the Development of Heart Failure

  • Chapter
Mechanisms of Heart Failure

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 167))

Summary

The major protein components of cardiac extracellular matrix include collagen, fibronectin, and elastin. Collagen is by far the predominant component of the cardiac extracellular matrix, and it has been shown that heart muscle contains five isoforms of this protein, including types I, III, IV, V, and VI. Of these, collagen types I and III are most abundant and represent more than 90% of all collagen proteins in the myocardium. Recent investigation of regulation of these proteins indicates that the synthesis and degradation of cardiac collagens are mediated by several key peptide and cytokine factors. Cardiac collagen concentration (fibrosis) is dependent upon the balance struck between the synthetic and degradative pathways, which are assessed by transcriptional and translational studies of specific collagen genes and cardiac collagenase activity, respectively. Recent studies indicate that the extracellular matrix plays an important role in the remodeling of the myocardium in various types of experimental heart failure. Clinical studies also demonstrate that extracellular matrix proteins are altered in patients suffering from end-stage heart failure of different etiologies. It is suggested that increased deposition of extracellular matrix may impair normal heart function. In this regard, inappropriate deposition of collagen may reduce right and left ventricular chamber compliance, and may thereby affect both positive and negative cardiac inotropism. As these changes may accelerate the development of heart failure, pharmacologic management of synthetic/degradative pathways of extracellular matrix components should be a priority for effective treatment of heart failure.

In any given organ, the volume displaced by constitutive cells may account for a fraction of the total volume of the tissue. Thus a substantial amount of organ volume is occupied by a complex network of macromolecules that is defined as the extracellular matrix and physically connects the constitutive cells. In most organs the extracellular matrix is composed of a variety of polysaccharides and proteins that are secreted by fibroblast cells [1]. The major components of the extracellular matrix include 1) the structural proteins, such as collagens and elastin; 2) cell adhesive or antiadhesive molecules, including fibronectin, vitronectin, laminin, and tenascin; and 3) proteoglycans, which are a complex array of proteins linked to glycosaminoglycan side chains. In the heart, cardiac myocytes occupy ∼75% of the total tissue space but represent only one third of the total cell number.

The nonmyocyte cells reside in the cardiac interstitium and account for about two thirds of the total cell population. These cell types include cardiac fibroblasts, endothelial cells, and vascular smooth muscle cells. Cardiac fibro-blasts exist in large numbers in the heart and form the largest group among cardiac nonmyocyte cells [2,3]. Recent data indicate that the cardiac extracellular matrix plays a critical role in the function of both normal and failing myocardium [4]. It is becoming clear that extracellular matrix proteins are not merely involved in serving only as the cellular scaffolding for the myocardium per se but may significantly contribute to cardiac function. As some recent biochemical and molecular studies have led to a burgeoning knowledge of the general characteristics of the cardiac stromal tissue and as much recent work in various experimental models has addressed the role of extracellular matrix in the diseased heart, we have undertaken a review of these topics. This review summarizes the structure and function of cardiac extracellular matrix, factors in the regulation of the synthesis and degradation of the extracellular matrix, and the role of the extracellular matrix in heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lin CQ, Bisseil MJ. Multi-faceted regulation of cell differentiation by extracellular matrix. FASEBJ 7:737–743, 1993.

    CAS  Google Scholar 

  2. Zak R. Cell proliferation during cardiac growth. Am J Cardiol 31:211–219, 1973.

    Article  PubMed  CAS  Google Scholar 

  3. Frank JS, Langer GA. The myocardial interstitium: Its structure and its role in ionic exchange. J Cell Biol 60:586–601, 1974.

    Article  PubMed  CAS  Google Scholar 

  4. Pelouch V, Dixon IMC, Golfman L, Beamish RE, Dhalla NS. Role of extracellular matrix proteins in heart function. Mol Cell Biochem 129:101–120, 1993.

    Article  PubMed  CAS  Google Scholar 

  5. Weber KT. Cardiac interstitium in health and disease: The fibrillar collagen network. J Am Coll Cardiol 13:1637–1652, 1989.

    Article  PubMed  CAS  Google Scholar 

  6. Chapman D, Weber KT, Eghbali M. Regulation of fibrillar collagen type I and type III and basement membrane type IV. Collagen gene expression in pressure overloaded rat myocardium. Circ Res 67:787–794, 1990.

    Article  PubMed  CAS  Google Scholar 

  7. Bashey RI, Martinez-Hernandez A, Jimenez SA. Isolation, characterization, and localization of cardiac collagen type VI. Association with other extracellular matrix components. Circ Res 70:1006–1017, 1992.

    Article  PubMed  CAS  Google Scholar 

  8. Speiser B, Riess CF, Schaper J. The extracellular matrix in human myocardium: Part 1: Collagens, I III, IV, and VI. Cardioscience 2:225–232, 1991.

    PubMed  CAS  Google Scholar 

  9. Iimoto DS, Covell JW, Harper E. Increase in cross-linking of type I and type III collagens associated with volume-overloaded hypertrophy. Circ Res 63:399–408, 1988.

    Article  PubMed  CAS  Google Scholar 

  10. Eghbali M, Czaja MJ, Zeydel M, Weiner FR, Zern MA, Seifter S, Blumenfeld OO. Collagen chain mRNAs in isolated heart cells from young and adult rats. J Mol Cell Cardiol 20:267–276, 1988.

    Article  PubMed  CAS  Google Scholar 

  11. Eghbali M, Blumenfeld OO, Seifter S, Buttrick PM, Leinwand LA, Robinson TF, Zern MA, Giambrone MA. Localization of type I, III and IV collagen mRNAs in rat heart cells by in situ hybridization. J Mol Cell Cardiol 21:103–113, 1989.

    Article  PubMed  CAS  Google Scholar 

  12. Medugorac I. Myocardial collagen in different forms of heart hypertrophy in the rat. Res Exp Med (Berl) 177:201–211, 1980.

    Article  CAS  Google Scholar 

  13. Medugorac I, Jacob R. Characterization of left ventricular collagen in the rat. Cardiovasc Res 17:15–21, 1983.

    Article  PubMed  CAS  Google Scholar 

  14. Mukherjee D, Sen S. Collagen phenotypes during development and regression of myocardial hypertrophy in spontaneously hypertension rats. Circ Res 67:1474–1480, 1990.

    Article  PubMed  CAS  Google Scholar 

  15. Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium. Circulation 83:1849–1865, 1991.

    Article  PubMed  CAS  Google Scholar 

  16. Weber KT, Sun Y, Tyagi SC, Cleutjens JPM. Collagen network of the myocardium: Function, structural remodeling and regulatory mechanisms. J Mol Cell Cardiol 26:279–292, 1994.

    Article  PubMed  CAS  Google Scholar 

  17. Borg T, Johnson LD, Lill PH. Specific attachment of collagen to cardiac myocytes: In-vivo and in-vitro. Dev Biol 97:417–423, 1983.

    Article  PubMed  CAS  Google Scholar 

  18. Eng C, Zhao M, Factor SM, Sonnenblick EH. Post-ischemic cardiac dilation and remodeling: Reperfusion injury of the interstitium. Eur Heart J 14(Suppl A):27–32, 1993.

    Article  PubMed  Google Scholar 

  19. Speiser B, Weihrauch D, Reiss CF, Schaper J. The extracellular matrix in human cardiac tissue part II: Vimentin, laminin, and fibronectin. Cardioscience 3:41–49, 1992.

    PubMed  CAS  Google Scholar 

  20. Casscells W, Kimura H, Sanchez JA, Yu ZX, Ferrans VJ. Immunohistochemical study of fibronectin in experimental myocardial infarction. Am J Pathol 137:801–810, 1990.

    PubMed  CAS  Google Scholar 

  21. Lundgren E, Gullberg D, Rubin K, Borg TK, Terracio MJ, Terracio L. In vitro studies on adult cardiac myocytes: Attachment and biosynthesis of collagen type IV and laminin. J Cell Physiol 136:43–53, 1988.

    Article  PubMed  CAS  Google Scholar 

  22. Borg TK, Rubin K, Lundgren E, Borg K, Öbrink B. Recognition of extracellular matrix components by neonatal and adult cardiac myocytes. Dev Biol 104:86–96, 1984.

    Article  PubMed  CAS  Google Scholar 

  23. Lundgren E, Terracio L, Mardh S, Borg TK. Extracellular matrix components influence the survival of adults cardiac myocytes in vitro. Exp Cell Res 158:371–381, 1985.

    Article  PubMed  CAS  Google Scholar 

  24. Hynes RO. Integrins: Versatility, modulation, and signaling in cell adhesion. Cell 69:11–25, 1992.

    Article  PubMed  CAS  Google Scholar 

  25. Nowak R. Cell biologists get the message in New Orleans. Science 263:30–31, 1994.

    Article  PubMed  CAS  Google Scholar 

  26. Bonnin CM, Sparrow MP, Taylor RR. Collagen synthesis and content and turnover in right ventricular hypertrophy in the dog. Am J Physiol 241:H708–H713, 1981.

    PubMed  CAS  Google Scholar 

  27. Laurent GJ, Sparrow MP, Bates PC, Millward DJ. Collagen content and turnover in cardiac and skeletal muscle of the adult fowl and the changes during stretch-induced growth. Biochem J 176:419–427, 1978.

    PubMed  CAS  Google Scholar 

  28. Chakraborty A, Eghbali M. Collagenase activity in the normal rat myocardium: An immunohistochemical method. Histochemistry 92:391–396, 1989.

    Article  PubMed  CAS  Google Scholar 

  29. Tyagi SC, Ratajka A, Weber KT. Myocardial matrix metalloproteinase(s): Localization and activation. Mol Cell Biochem 126:49–59, 1993.

    Article  PubMed  CAS  Google Scholar 

  30. Kato H, Suzuki H, Tajima S, Ogata Y, Tominaga T, Sato A, Saruta T. Angiotensin II stimulates collagen synthesis in cultured vascular smooth muscle cells. J Hypertens 9:17–22, 1990.

    Google Scholar 

  31. Regenass S, Resink TJ, Kern F, Bühler FR, Hahn AWA. Angiotensin-II-induced expression of laminin complex and laminin A-chain-related transcripts in vascular smooth muscle cells. J Vasc Res 31:163–172, 1994.

    Article  PubMed  CAS  Google Scholar 

  32. Villarreal FJ, Kim NN, Ungab GD, Printz MP, Dillmann WH. Identification of functional angiotensin II receptors on rat cardiac fibroblasts. Circulation 88:2849–2861, 1993.

    Article  PubMed  CAS  Google Scholar 

  33. Schorb W, Booz GW, Dostal DE, Conrad KM, Chang KC and Barker KM. Angiotensin II is mitogenic in neonatal rat cardiac fibroblasts. Circ Res 72:1245–1254, 1993.

    Article  PubMed  CAS  Google Scholar 

  34. Brilla CG, Zhou G, Matsubara L, Weber KT. Collagen metabolism in cultured adult rat cardiac fibroblasts: Response to angiotensin II and aldosterone. J Mol Cell Cardiol 26:809–820, 1994.

    Article  PubMed  CAS  Google Scholar 

  35. Crawford DC, Chobanian AV, Brecher P. Angiotensin II induces fibronectin expression associated with cardiac fibrosis in the rat. Cir Res 74:727–739, 1994.

    Article  CAS  Google Scholar 

  36. Guarda E, Myers PR, Brilla CG, Tyagi SC, Weber KT. Endothelial cell induced modulation of cardiac fibroblast collagen metabolism. Cardiovaesc Res 27:1004–1008, 1993.

    Article  CAS  Google Scholar 

  37. Guarda E, Katwa LC, Myers PR, Tyagi SC, Weber KT. Effects of endothelins on collagen turnover in cardiac fibroblasts. Cardiovasc Res 27:2130–2134, 1993.

    Article  PubMed  CAS  Google Scholar 

  38. Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM, Heine UI, Liotta LA, Falanga V, Kehrl JH, Fauci AS. Transforming growth factor type-β: Rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 83:4167–4171, 1986.

    Article  PubMed  CAS  Google Scholar 

  39. Ignotz RA, Massagué J. Transforming growth factor-β stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem 261:4337–4345, 1986.

    PubMed  CAS  Google Scholar 

  40. Varga J, Jimenez SA. Stimulation of normal human fibroblast collagen production and processing by transforming growth factor-TGF-beta. Biochem Biophys Res Commun 138:974–980, 1986.

    Article  PubMed  CAS  Google Scholar 

  41. Raghow R, Postlethwaite AE, Keski-Oja J, Moses HL, Kang AH. Transforming growth factor-TGF-β increase steady level of type I procollagen and fibronectin messenger RNAs posttranscriptionally in cultured human dermal fibroblasts. J Clin Invest 79:1285–1288, 1987.

    Article  PubMed  CAS  Google Scholar 

  42. Fine A, Goldstein RH. The effect of transforming growth factor-TGF-β on cell proliferation and collagen formation by lung fibroblasts. J Biol Chem 262:3897–3902, 1987.

    PubMed  CAS  Google Scholar 

  43. Eghbali M, Tomek R, Sukhatme VP, Woods C, Bhambi B. Differential effects of transforming growth factor-βl and phorbol myristate acetate on cardiac fibroblasts. Circ Res 69:483–490, 1991.

    Article  PubMed  CAS  Google Scholar 

  44. Reed MJ, Vernon RB, Abrass IB, Sage EH. TGF-βl induces the expression of type I collagen and SPARC, and enhances contraction of collagen gels, by fibroblasts from young and aged donors. J Cell Physiol 158:169–179, 1994.

    Article  PubMed  CAS  Google Scholar 

  45. Ritzenthaler JD, Goldstein RH, Fine A, Lichtler A, Rowe DW, Smith BD. Transforming-growth-factor-β activation elements in the distal promoter regions of the rat αl type I collagen gene. Biochem J 280:157–162, 1991.

    PubMed  CAS  Google Scholar 

  46. Jimenez SA, Varga J, Olsen A, Li L, Diaz A, Herhal J, Koch J. Functional analysis of human al (I) procollagen gene promoter. J Biol Chem 269:12684–12691, 1994.

    PubMed  CAS  Google Scholar 

  47. Varga J, Diaz-Perez A, Rosenbloom J, Jimenez SA. PGE2 causes a coordinate decrease in the steady state levels of fibronectin and types I and III procollagen mRNAs in normal human dermal fibroblasts. Biochem Biophys Res Commun 147:1282–1288, 1987.

    Article  PubMed  CAS  Google Scholar 

  48. Goldstein RH, Polgar P. The effect and interaction of bradykinin and prostaglandins on protein and collagen production by lung fibroblasts. J Biol Chem 257:8630–8633, 1982.

    PubMed  CAS  Google Scholar 

  49. Woo P. Signal transduction by inflammatory cytokines. Clin Exp Rheumatol, 11(Suppl 9):S29–S32, 1993.

    PubMed  Google Scholar 

  50. Postlewaite AE, Raghow R, Stricklin GP, Poppleton H, Seyer JM, Kang AH. Modulation of fibroblast functions by interleukin 1: Increased steady-state accumulation of type I procollagen messenger RNAs and stimulation of other function but not chemotaxis by human recombinant interleukin 1 α and β. J Cell Biol 106:311–318, 1988.

    Article  Google Scholar 

  51. Krane SM, Dayer JM, Simon LS, Byrne MS. Mononuclear cell-conditioned medium containing mononuclear cell factor (MCF), homologous with interleukin 1, stimulates collagen and fibronectin synthesis by adherent rheumatoid synovial cells: Effects of prosta-glandin E2 and indomethacin. Collagen Relat Res 5:99–117, 1985.

    Article  CAS  Google Scholar 

  52. Whiteside TL, Buckingham RB, Prince RK, Rodnan GP. Products of activated mononuclear cells modulate accumulation of collagen by normal dermal and scleroderma fibroblasts in culture. J Lab Clin Med 104:355–369, 1984.

    PubMed  CAS  Google Scholar 

  53. Solis-Herruzo JA, Brenner DA, Chojkier M. Tumor necrosis factor α inhibits collagen transcription and collagen synthesis in cultured human fibroblasts. J Biol Chem 263:5841–5845, 1988.

    PubMed  CAS  Google Scholar 

  54. Mauviel A, Lapiére J-C, Halcin C, Evans CH, Uitto J. Differential cytokine regulation of type I and type VII collagen gene expression in cultured human dermal fibroblasts. J Biol Chem 269:25–28, 1994.

    PubMed  CAS  Google Scholar 

  55. Zhou G, Tyagi SC, Weber TK. Bradykinin regulates collagen turnover in cardiac fibroblasts. Clin Res 41:630A, 1993.

    Google Scholar 

  56. AIRE Study Investigators. Effect of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure. Lancet 342:821–828, 1993.

    Google Scholar 

  57. Woessner JF Jr. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J 5:2145–2154, 1991.

    PubMed  CAS  Google Scholar 

  58. Takahashi S, Barry AC, Factor SM. Collagen degradation in ischemic rat hearts. Biochem J 265:233–241, 1990.

    PubMed  CAS  Google Scholar 

  59. Charney RH, Takahashi S, Zhao M, Sonnenblick EH, Eng C. Collagen loss in the stunned myocardium. Circulation 85:1483–1490, 1992.

    Article  PubMed  CAS  Google Scholar 

  60. Sekili S, McCay PB, Li XY, Zughaib M, Sun JZ, Tang L, Thornby JI, Bolli R. Direct evidence that the hydroxyl radical plays a pathogenetic role in myocardial “stunning” in the conscious dog and demonstration that stunning can be markedly attenuated without subsequent adverse effects. Circ Res 73:705–723, 1993.

    Article  PubMed  CAS  Google Scholar 

  61. Weiss SJ, Peppin G, Ortiz X, Ragsdale C, Test ST. Oxidative autoactivation of latent collagenase by human neutrophils. Science 227:747–749, 1985.

    Article  PubMed  CAS  Google Scholar 

  62. Carp H, Janoff A. Phagocyte-derived oxidants suppress the elastase-inhibitory activity of αl-proteinase inhibitor in vitro. J Clin Invest 66:987–995, 1980.

    Article  PubMed  CAS  Google Scholar 

  63. Greenwald RA, Moy WW, Lazarus D. Degradation of cartilage proteoglycans and collagen by Superoxide radical. Arthritis Rheum 19:799, 1976.

    Google Scholar 

  64. Brenner DA, O’ Hara M, Angel P, Chojkier M, Karin M. Prolonged activation of jun and collagenase genes by tumor necrosis factor-alpha.’ Nature 337:661–663, 1989.

    Article  CAS  Google Scholar 

  65. Zimmer H-G, Gerdes AM, Lortet S, Mall G. Changes in heart function and cardiac cell size in rats with chronic myocardial infarction. J Mol Cell Cardiol 22:1231–1243, 1990.

    Article  PubMed  CAS  Google Scholar 

  66. Mill JG, Stefanon I, Leite CM, Vassallo DV. Changes in performance of the surviving myocardium after left ventricular infarction in rats with chronic myocardial infarction. Cardiovasc Res 24:748–753, 1990.

    Article  PubMed  CAS  Google Scholar 

  67. Sato S, Ashraf M, Millard RW, Fujiwara H, Schwartz A. Connective tissue changes in early ischemia of porcine myocardium: An ultrastructural study. J Mol Cell Cardiol 15:261–275, 1983.

    Article  PubMed  CAS  Google Scholar 

  68. Zhao M, Zhang H, Robinson TF, Factor SM, Sonnenblic EH, Eng C. Profound structural alterations of extracellular collagen matrix in postischemic dysfunction (“stunned”) but viable myocardium. J Am Coll Cardiol 10:1322–1334, 1987.

    Article  PubMed  CAS  Google Scholar 

  69. Shekhonin BV, Guriev SB, Irgashev SB, Koteliansky VE. Immunofluorescent identification of fibronectin and fibrinogen/fibrin in experimental myocardial infarction. J Mol Cell Cardiol 22:533–541, 1990.

    Article  PubMed  CAS  Google Scholar 

  70. Knowlton AA, Connelly CM, Romo GM, Mamuya W, Apstein CS, Brecher P. Rapid expression of fibronectin in the rabbit heart after myocardial infarction with and without reperfusion. J Clin Invest 89:1060–1068, 1992.

    Article  PubMed  CAS  Google Scholar 

  71. van Krimpen C, Smits JFM, Cleutjens JPM, Debets JJM, Schoemaker RG, Boudier HAJS, Bosman FT, Daemen MJAP. DNA synthesis in the non-finarcted cardiac interstitium after left coronary artery ligation in the rat: Effects of captopril. J Mol Cell Cardiol 23:1245–1253, 1991.

    Article  PubMed  Google Scholar 

  72. Pelouch V, Dixon IMC, Sethi R, Dhalla NS. Alteration of collagenous protein profile in congestive heart failure secondary to myocardial infarction. Mol Cell Biochem 129:121–131, 1993.

    Article  PubMed  CAS  Google Scholar 

  73. Dixon IMC, Ju H, Scammell TK. Altered mRNA abundance of collagen type I and III in prefailure stage of congestive heart failure due to myocardial infarction. Can J Cardiol 10(Suppl A):72A, 1994.

    Google Scholar 

  74. McCormick RJ, Musch TI, Bergman BC, Thomas DP. Regional differences in LV collagen accumulation and mature cross-linking after myocardial infarction in rats. Am J Physiol 266:H354–H359, 1994.

    PubMed  CAS  Google Scholar 

  75. Reiser JM, McCormick RJ, Rucker RB. The enzymatic and non-enzymatic crosslinking of collagen and elastin. FASEB J 6:2439–2449, 1992.

    PubMed  CAS  Google Scholar 

  76. Eyre DR, Paz MA, Gallop PM. Crosslinks in collagen and elastin. Annu Rev Biochem 53:717–748, 1984.

    Article  PubMed  CAS  Google Scholar 

  77. Schieffer B, Wirger A, Meybrunn M, Seitz S, Holtz J, Riede UN, Drexler H. Comparative effects of chronic angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade on cardiac remodeling after myocardial infarction in the rat. Circulation 89:2273–2282, 1994.

    Article  PubMed  CAS  Google Scholar 

  78. Zellner JL, Spinale FG, Eble DM, Hewett KW, Crawford FA Jr. Alterations in myocyte shape and basement membrane attachment with tachycardia-induced heart failure. Circ Res 69:590–600, 1991.

    Article  PubMed  CAS  Google Scholar 

  79. Factor SM, Robinson TF. Comparative connective tissue structure-function relationships in biologic pumps. Lab Invest 58:150–156, 1988.

    PubMed  CAS  Google Scholar 

  80. Villarreal FJ, Dillmann WH. Cardiac hypertrophy-induced changes in mRNA levels for TGF-β l, fibronectin, and collagen. Am J Physiol 262:H1861–H1866, 1992.

    PubMed  CAS  Google Scholar 

  81. Eleftheriades EG, Durand J-B, Ferguson AG, Engelmann GL, Jones SB, Samarel AM. Regulation of procollagen metabolism in the pressure-overloaded rat heart. J Clin Invest 91:1113–1122, 1993.

    Article  PubMed  CAS  Google Scholar 

  82. Lipke DW, McCarthy KJ, Elton TS, Arcot SS, Oparil S, Couchman JR. Coarction induces alterations in basement membranes in the cardiovascular system. Hypertension 22:743–753, 1993.

    Article  PubMed  CAS  Google Scholar 

  83. Schaper J, Speiser B. The extracellular matrix in the failing human heart. Basic Res Cardiol 87(Suppl 1):303–309, 1992.

    PubMed  Google Scholar 

  84. Carroll EP, Janicki JS, Pick R, Weber KT. Myocardial stiffness and reparative fibrosis following coronary embolisation in the rat. Cardiovasc Res 23:655–661, 1989.

    Article  PubMed  CAS  Google Scholar 

  85. Thiedemann KU, Holubarsch C, Medugorac I, Jacob R. Connective tissue content and myocardial stiffness in pressure overload hypertrophy. A combined study of morphologic, morphometric, biochemical, and mechanical parameters. Basic Res Cardiol 78:140–155, 1983.

    Article  PubMed  CAS  Google Scholar 

  86. Litwin SE, Litwin CM, Raya TE, Warner AL, Goldman S. Contractility and stiffness of noninfarcted myocardium after coronary legation in rats. Circulation 83:1028–1037, 1991.

    Article  PubMed  CAS  Google Scholar 

  87. Boluyt MO, O’ Neill L, Meredith AL, Bing OHL, Brooks WW, Conard CH, Crow MT, Lakatta EG. Alteration in cardiac gene expression during the transition from stable hypertrophy to heart failure. Circ Res 75:23–32, 1994.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ju, H., Dixon, I.M.C. (1995). Cardiac Extracellular Matrix and its Role in the Development of Heart Failure. In: Singal, P.K., Dixon, I.M.C., Beamish, R.E., Dhalla, N.S. (eds) Mechanisms of Heart Failure. Developments in Cardiovascular Medicine, vol 167. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2003-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2003-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5827-5

  • Online ISBN: 978-1-4615-2003-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics