Skip to main content

Metabolic Changes in Nonischemic Myocardium During Pump Failure

  • Chapter
Mechanisms of Heart Failure

Summary

Metabolic changes in the nonischemic myocardium after acute myocardial infarction in canine hearts were studied. Ca2+-ATPase activity and the major ATPase protein of the sarcoplasmic reticulum, tissue levels of ATP, mitochondrial respiratory, and complex I activities were decreased in the noninfarcted zone in proportion to heart function. It is suggested that recovery of these functions may be important in any treatment of pump failure.

The prognosis of acute myocardial infarction has improved remarkably in recent decades with the establishment of coronary care units. However, the mortality of patients in whom acute myocardial infarction is complicated by severe pump failure remains higher, and this etiology has not been completely elucidated. The relationship between infarct size and the occurrence of pump failure has been discussed, for a long time, but this problem has not yet been completely resolved. The aim of this study was to understand metabolic changes in nonischemic myocardium on acute myocardial infarction in canine hearts in terms of the biochemistry of the sarcoplasmic reticulum, tissue ATP content, and the mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harigaya S, Schwartz, A. Rate of calcium binding and uptake in normal animal and failing human cardiac muscle. Circ Res 25:781, 1969.

    Article  PubMed  CAS  Google Scholar 

  2. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacterophage T4. Nature 227:680, 1970.

    Article  PubMed  CAS  Google Scholar 

  3. Sordahl LA, Stewart ML. Mechanism(s) of altered mitochondrial calcium transport in actely ischemic canine heart. Circ Res 47:814, 1980.

    Article  PubMed  CAS  Google Scholar 

  4. Chance B, Williams GR. Respiratory enzymes in oxidative phosphorylation. I. Kinetic of oxygen utilization. J Biol Chem 217:383, 1955.

    PubMed  CAS  Google Scholar 

  5. Pullman ME, Penefsky HS, Data A, Racker E. Partial resolution of the enzimes catalyzing oxidateve phosphorylation. I. Purification and properties of soluble dinitrophenol-stimulated adenosine triphosphatase. J Biol Chem 235:3322, 1960.

    PubMed  CAS  Google Scholar 

  6. Hatefi Y, Riske JS. Preparation and properties of DPNH-coenzyme Q reductase (complex I of the respiratory chain). In: Methods in Enzymology, Vol x. Oxidation and Phosphorylation. Estabrook RW, Pullman ME (eds). New York: Academic Press, 1967, p 235.

    Chapter  Google Scholar 

  7. Toba K, Katagiri T, Takeyama Y. Studies on the cardiac sarcoplasmic reticulum in myocardial infarction. Jpn Circ J 42:447, 1978.

    Article  PubMed  CAS  Google Scholar 

  8. Martonosi A, Harpin RA. Sarcoplasmic reticulum. X. The protein composition of sarcoplasmic reticulim membranes. Arch Biochem Biophys 144:66, 1971.

    Article  PubMed  CAS  Google Scholar 

  9. Swan HJ, Forrester JS, Diamond G, Chatterges K. Hemodynamic spectrum of myocardial infarction and cardiogenic shock. Circulation 45:1097, 1972.

    Article  PubMed  CAS  Google Scholar 

  10. Kurland GS, Weingarten C, Pitt B. The relation between the location of coronary occlusions and the occurrence of shock in acute myocardial infarction. Circ J 31:646, 1965.

    Article  CAS  Google Scholar 

  11. Geshi E, Konno N, Yanagishita T, Katagiri T. Impairment of mitochondrial respiratory activity in the early ischemic myocardium. Jpn Circ J 52:535, 1988.

    Article  PubMed  CAS  Google Scholar 

  12. Konno N, Yanagishita T, Katagiri T. Degradation of the cardiac sarcoplasmic reticulum in acute myocardial ischemia. Jpn Circ J 51:535, 1987.

    Article  Google Scholar 

  13. Yanagishita T, Konno N, Geshi E, Katagiri T. Alterations in phospholipids in acute ischemic myocardium. Jpn Circ J 51:41, 1987.

    Article  PubMed  CAS  Google Scholar 

  14. Mochizuki M, Konno N, Unetsu K, Katagiri T. Metabolic changes in the non-ischemic myocardium under pump failure complicated in acute myocardial infarction. Showa Med J 48:95, 1988.

    Google Scholar 

  15. Mukae S, Geshi E, Mochizuki M, Katagiri T. Impairment of mitochondrial activity of non-infarcted myocardium under pump failure in acte myocardial infarction. Jpn Circ J 55:835, 1991.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ishioka, H. et al. (1995). Metabolic Changes in Nonischemic Myocardium During Pump Failure. In: Singal, P.K., Dixon, I.M.C., Beamish, R.E., Dhalla, N.S. (eds) Mechanisms of Heart Failure. Developments in Cardiovascular Medicine, vol 167. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2003-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2003-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5827-5

  • Online ISBN: 978-1-4615-2003-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics