Skip to main content

Altered Myocardial Neurotransmitter and 1,2-Diacylglycerol Concentrations in Right Ventricular Hypertrophy and Failure in Rats

  • Chapter
Mechanisms of Heart Failure

Summary

In order to better understand changes in markers of autonomic innervation associated with cardiac hypertrophy and failure, we measured myocardial acetylcholine (ACh) and norepinephrine (NE) after the injection of monocrotaline (MCT) in rats. We aslo determined 1,2-diacylgcerol (DAG), which is a second messenger activated by these neurotransmitters. At 2 weeks after MCT injection, right ventricular hypertrophy with no sign of heart failure occurred. Acetylcholine and 1,2-DAG concentrations increased by 29% and 55%, respectively, in the right ventricles. Four weeks later, decompensated heart failure was observed. In contrast to the 2-week hearts, the 4-week MCT right ventricles had a significant decrease in NE (-86%), ACh (-76%), and 1,2-DAG (-25%) concentrations, whereas there was no marked change in the left ventricles. These results indicate that parasympathetic innervation shows a transient increase during progressive hypertrophy due to pressure overload, accompanied by an increase in 1,2-DAG, and that NE, ACh, and 1,2-DAG are all depleted with the progression of overt heart failure.

Changes in cardiac autonomie innervation occur following the imposition of increased load on the heart. It is well known that the myocardial catecholamine store is depleted in congestive heart failure both in humans [1] and experimental animals [2,3]. Acute cardiac hypertrophy without failure induced by constriction of aorta or pulmonary artery results in reduction of the catecholamine store [4,5]. However, slowly progressive cardiac hypertrophy is not associated with the depression of sympathetic indices but with an increase in the norepinephrine store [6,7]. Both the spontaneously hypertensive rat [8] and the cardiomyopathic Syrian hamster during the compensated stage of heart failure [9] show an increase in myocardial catecholamine. Thus, the changes in sympathetic cardiac innervation vary, depending upon the stage and the time course of heart failure.

The parasympathetic nervous system also regulates ventricular function [10], and it does so not only directly but also by an indirect effect, which is mediated via parasympathetic modulation of the sympathetic effects. This sympathetic-parasympathetic interaction has been reported at both the inter- neuronal [11,12] and the intracellular [13] levels. When the activity of the sympathetic nervous system is increased, the effect of the parasympathetic nervous system becomes prominent [14].

It is well accepted that 1,2-diacylglycerol (DAG) is one of the second messengers in the transmembraneous cellular signal transduction system. An increase in 1,2-DAG followed by activating protein kinase C is the initial event in phosphoinositide hydrolysis, which is caused by the neurotransmitters norepinephrine (NE) [15] and acetylcholine (ACh) [16], a signaltransduction mechanism [17].

A single injection of monocrotaline (MCT) induces severe pulmonary hypertension and right ventricular pressure overload in rats with consequent development of right ventricular hypertrophy [18]. Monocrotaline-induced pulmonary hypertension is a convenient model for the study of both hypertrophy and cardiac failure. In this model, there appears to be an intrinsic control in the unaffected left side of the heart. This gives an advantage over models based on lesions affecting the left ventricle, which, secondarily, also affect the right side of the heart. It would be of great interest to investigate the serial changes in myocardial NE, ACh, and 1,2-DAG during the development of right ventricular hypertrophy and failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DeQuattro V, Nagatsu T, Mendez A, Verska J. Determinants of cardiac noradrenaline depletion in human congestive failure. Cardiovasc Res 7:344–350, 1973.

    Article  PubMed  CAS  Google Scholar 

  2. Pool PE, Covell JW, Levitt M, Gibb J, Braunwald E. Reduction of cardiac tyrosine hydroxylase activity in experimental congestive heart failure. Circ Res 20:349–353, 1967.

    Article  PubMed  CAS  Google Scholar 

  3. Karliner JS, Barnes P, Brown M, Dollery C. Chronic heart failure in the guinea pig increases α1-and β-adrenoceptors. Eur J Pharmacol 67:115–118, 1980.

    Article  PubMed  CAS  Google Scholar 

  4. Chidsey Ca, Kaiser GA, Sonnenblick EH, Spann JF, Braunwald E. Cardiac norepinephrine stores in experimental heart failure in the dog. J Clin Invest 43:2386–2392, 1964.

    Article  PubMed  CAS  Google Scholar 

  5. Coulson RL, Yazdanfar S, Rubio E, Bove AA, Lemole GM, Spann JR. Recuperative potential of cardiac muscle following relief of pressure load hypertrophy and right ventricular failure in the cat. Circ Res 40:41–49, 1977.

    Article  PubMed  CAS  Google Scholar 

  6. Lindpaintner K, Lund DD, Schmid PG. Effects of chronic progressive myocardial hypertrophy on indexes of cardiac autonomic innervation. Circ Res 61:55–62, 1987.

    Article  PubMed  CAS  Google Scholar 

  7. Calderera CM, Casti A, Rossoni C, Visioli O. Polyamines and norardrenaline following myocardial hypertrophy. J Mol Cell Cardiol 3:121–126, 1971.

    Article  Google Scholar 

  8. Tsuboi H, Ohno O, Ogawa K, Ito T, Hashimoto H, Okumura K, Satake T. Acetylcholine and norepinephrine concentrations in the heart of spontaneously hypertensive rats: A parasympathetic role in hypertension. J Hypertens 5:323–330, 1987.

    Article  PubMed  CAS  Google Scholar 

  9. Sole MJ, Lo CM, Laird CW, Sonnenblick EH, Wurtman R. Norepinephrine turnover in the heart and spleen of the cardiomyopathic Syrian hamster. Circ Res 37:855–862, 1975.

    Article  PubMed  CAS  Google Scholar 

  10. Higgins CB, Vatner SF, Braunwald E. Parasympathetic control of the heart. Pharmacol Rev 25:119–155, 1973.

    PubMed  CAS  Google Scholar 

  11. Muscholl E. Peripheral muscarinic control of norepinephrine release in the cardiovascular system. AmJ Physiol 239:H713–H720, 1980.

    CAS  Google Scholar 

  12. Vanhoutte PM, Levy MN. Prejunctional cholinergic modulation of adrenergic neurotransmission in the cardiovascular system. AmJ Physiol 238:H275–H281, 1980.

    CAS  Google Scholar 

  13. Watanabe AM, Besch HR. Interaction between cyclic adenosine monophosphate and cyclic guanosine monophosphate in guinea pig ventricular myocardium. Circ Res 37:309–317, 1975.

    Article  PubMed  CAS  Google Scholar 

  14. Levy MN. Cardiac sympathetic-parasympathetic interactions. Fed Proc 43:2598–2602, 1984.

    PubMed  CAS  Google Scholar 

  15. Kirk CJ, Creba JA, Downes CP, Michell RH. Hormone-stimulated metabolism of inositol lipids and its relationship to hepatic receptor function. Biochem Soc Trans 9:377–379, 1981.

    PubMed  CAS  Google Scholar 

  16. Schacht J, Agranoff BW. Effects of acetylcholine on labeling phosphatidase and phospho-inositides by [32P]orthophosphate in nerve ending fractions of guinea pig cortex. J Biol Chem 247:771–777, 1972.

    PubMed  CAS  Google Scholar 

  17. Nishizuka Y. Turnover of inositol phospholipids and signal transduction. Science 225: 1365–1370, 1984.

    Article  PubMed  CAS  Google Scholar 

  18. Meyrick B, Gamble W, Reid L. Development of crotalaria pulmonary hypertension: Hemodynamic and structural study. Am J Physiol 239:H692–H702, 1980.

    PubMed  CAS  Google Scholar 

  19. Kaneda N, Asano M, Nagatsu T. Simple method for the simultaneous determination of acetylcholine, choline, noradrenaline, dopamine and serotonin in brain tissue by high-performance liquid chromatography with elecrochemical detection. J Chromatogr 360: 211–218, 1986.

    Article  PubMed  CAS  Google Scholar 

  20. Okumura K, Hashimoto H, Ito T, Ogawa K, Satake T. Quantitation of 1,2-diacylglycerol in rat heart by Iatroscan TLC/FID. Lipids 23:253–255, 1988.

    Article  PubMed  CAS  Google Scholar 

  21. Okumura K, Yamada Y, Kondo J, Ishida A, Hashimoto H, Ito T, Ogawa K, Kitoh J. Increased 1,2-diacylglycerol content in myopathic hamster hearts at a prenecrotic stage. Life Sci 43:1371–1377, 1988.

    Article  PubMed  CAS  Google Scholar 

  22. Kay JM, Keane PM, Suyama KL, Gauhier D. Angiotensin coverting enzyme activity and evolution of pulmonary vascular disease in rats with monocrotaline pulmonary hypertension. Thorax 37:88–96, 1982.

    Article  PubMed  CAS  Google Scholar 

  23. Spann JF, Chidsey CA, Pool PE, Braunwald E. Mechanism of norepinephrine depletion in experimental heart failure produced by aortic constriction in guinea pig. Circ Res 17: 312–321, 1965.

    Article  PubMed  CAS  Google Scholar 

  24. Sassa H. Mechanism of myocardial catecholamine depletion in cardiac hypertrophy and failure in rabbits. Jpn Circ J 35:391–403, 1971.

    Article  PubMed  CAS  Google Scholar 

  25. Lindpaintner K, Whiteis CA, Lund DD, Schmid PG. Sustained increase in cardiac cate-cholamines in chronically progress cardiac hypertrophy (abstract). Circulation 72:III–5, 1985.

    Google Scholar 

  26. Lindpaintner K, Lund DD, Schmid PG. Role of myocardial hypertrophy in trophic stimulation of indices of sympathetic cardiac innervation. J Cardiovasc Pharmacol 10(Suppl 12):S211–S220, 1987.

    Article  PubMed  CAS  Google Scholar 

  27. Schmid PG, Lund DD, Davis JA, Whiteis CA, Bhatnager RK, Roskoski R Jr. Selective sympathetic neural changes in hypertrophied right ventricle. Am J Physiol 243:H175–H180, 1982.

    PubMed  CAS  Google Scholar 

  28. Lund DD, Kneupeer MM, Brody MJ, Bhatnager PK, Schmid PG, Roskoski R Jr. Comparison of tyrosine hydroxylase and choline acetyltrasferase activity in response to sympathetic nervous system activation. Brain Res 156:192–197, 1978.

    Article  PubMed  CAS  Google Scholar 

  29. Borchard F. The adrenergic nerves of the normal and hypertrophied heart. In: Normal and Pathological Anatomy. Bargmann W, Doerr W (eds). Littleton, MA: P.G.S. 1978, pp 1–68.

    Google Scholar 

  30. Ceconi C, Condorelli E, Quinzanini M, Rodella A, Ferrari R, Harris P. Noradrenaline, atrial natriuretic peptide, bombesin and neurotensin in myocardium and blood of rats in congestive cardiac failure. Cardiovasc Res 23:674–682, 1989.

    Article  PubMed  CAS  Google Scholar 

  31. Rosenberg H, Rabinovitch M. Endothelial injury and vascular reactivity in the pathogenesis of monocrotaline pulmonary hypertension. Am J Physiol 255:H1484–H1491, 1988.

    PubMed  CAS  Google Scholar 

  32. Werchan PM, Summer WR, Gerdes AM, McDonough KH Right ventricular performance after monocrotaline-induced pulmonary hypertension. Am J Physiol 256:H1382–1336, 1989.

    Google Scholar 

  33. Louie EK, Rich S, Brandage BH. Doppler echocardiographic assessment of impaired left ventricular filling in patients with right ventricular pressure overload due to primary pulmonary hypertension. J Am Coll Cardiol 8:1298–1306, 1986.

    Article  PubMed  CAS  Google Scholar 

  34. Grossman W. Diastolic dysfunction and congestive heart failure. Circulation 81(Suppl III): III1–III7, 1990.

    PubMed  CAS  Google Scholar 

  35. Lund DD, Schmid PG, Davis JA, Sharabi FM, Roskoski R. Increased choline acetyltrans-ferase activity in pressure-overloaded right ventricles of guinea pigs. Life Sci 32:2257–2264, 1983.

    Article  PubMed  CAS  Google Scholar 

  36. Cooper G IV, Kent RL, Ubon CE, Thompson EW, Marino TA. Hemodynamic versus adrenergic control of cat right ventricular hypertrophy. J Clin Invest 75:1403–1414, 1985.

    Article  PubMed  CAS  Google Scholar 

  37. Rasmussen H. The calcium messenger system. N Engl J Med 314:1164–1170, 1986.

    Article  PubMed  CAS  Google Scholar 

  38. Woodcock EA, White LB, Smith AI, McLeod JK. Stimulation of phosphatidylinositol metabolism in the isolated, perfused rat heart. Circ Res 61:625–631, 1987.

    Article  PubMed  CAS  Google Scholar 

  39. Brown JH, Buxton IL, Brounton LL. α1-Adrenergic and muscarinic cholinergic stimulation of phosphoinositide hydrolysis in adult rat cardiomyocytes. Circ Res 57:532–537, 1985.

    Article  PubMed  CAS  Google Scholar 

  40. Kariya K, Kawahara Y, Tsuda T, Fukuzaki H, Takai Y. Possible involvement of protein kinase C in platelet-derived growth factor-stimulated DNA synthesis in vascular smooth muscle cells. Atherosclerosis 63:251–255, 1987.

    Article  PubMed  CAS  Google Scholar 

  41. Rasmussen H, Forder J, Kojima I, Scriabine A. TAP-induced contraction of isolated rabbit vascular smooth muscle. Biochem Biophys Res Commun 122:776–784, 1984.

    Article  PubMed  CAS  Google Scholar 

  42. Danthuluri NR, Deth RC. Phorbol ester-induced contraction of arterial smooth muscle and inhibition of α-adrenergic response. Biochem Biophys Res Commun 125:1103–1109, 1984.

    Article  PubMed  CAS  Google Scholar 

  43. Hachiya HL, Takayama S, White MF, King GL. Regulation of insulin receptor internalization in vascular endothelial cells by insulin and phorbol ester. J Biol Chem 262:6417–6424, 1987.

    PubMed  CAS  Google Scholar 

  44. Kwok CF, Goldstein BJ, Muller-Wieland D, Lee T-S, Kahn CR, King GL. Identification of persistent defects in insulin receptor structure and function in capillary endothelial cells from diabetic rats. J Clin In vest 83:127–136, 1989.

    Article  CAS  Google Scholar 

  45. Okumura K, Yamada Y, Kondo J, Hashimoto H, Ito T, Kitoh J. Decreased 1,2-diacylglycerol levels in myopathic hamster hearts during the development of heart failure. J Mol Cell Cardiol 23:409–416, 1991.

    Article  PubMed  CAS  Google Scholar 

  46. Besterman JM, Duronio V, Cuatrecasas P. Rapid formation of diacylglycerol from phos-phatidylcholine: A pathway for generation of a second messenger. Proc Natl Acad Sci USA 83:6785–6789, 1986.

    Article  PubMed  CAS  Google Scholar 

  47. Cabot MC, Welsh CJ, Cao H, Chabbott H. The phosphatidylcholine pathway of diacylglycerol formation stimulated by phorbol diesters occurs via phospholipase D activation. FEBS Lett 233:153–157, 1988.

    Article  PubMed  CAS  Google Scholar 

  48. Farese RV, Konda TS, Davis JS, Standaert ML, Pollet RJ, Cooper DR. Insulin rapidly increases diacylglycerol by activating de novo phosphatidic acid synthesis. Science 236: 586–589, 1987.

    Article  PubMed  CAS  Google Scholar 

  49. Saltiel AR, Fox JA, Sherline P, Cuatrecasas P. Insulin-stimulated hydrolysis of a novel glycolipid generates modulators of cAMP phosphodiesterase. Science 233:967–972, 1986.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Okumura, K. et al. (1995). Altered Myocardial Neurotransmitter and 1,2-Diacylglycerol Concentrations in Right Ventricular Hypertrophy and Failure in Rats. In: Singal, P.K., Dixon, I.M.C., Beamish, R.E., Dhalla, N.S. (eds) Mechanisms of Heart Failure. Developments in Cardiovascular Medicine, vol 167. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2003-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2003-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5827-5

  • Online ISBN: 978-1-4615-2003-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics