Skip to main content

Vascular α-Adrenergic Function in Congestive Heart Failure

  • Chapter
Mechanisms of Heart Failure

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 167))

Summary

Congestive heart failure is associated with increased sympathetic nerve activity, which stimulates vascular α-adrenoceptors and modulates systemic vascular resistance. In the early stage of heart failure this may be beneficial in order to maintain adequate systemic pressure and vital organ perfusion. As a result, right and left ventricular filling pressures and pulmonary and systemic vascular resistance are markedly increased, and hepatosplanchnic blood flows are decreased. In the long term, these effects resulting from α-adrenergic stimulation may become detrimental and are associated with deterioration of congestive heart failure. Desensitization or downregulation induced by continuous exposure to a stimulus appears to be a general homeostatic mechanism by which target cells modulate responsiveness to agents acting at the cell’ s surface receptor. In severe congestive heart failure due to prolonged sympathetic stimulation, we have demonstrated that vascular α-adrenoceptors are desensitized and downregulated in a rat model of ischemic heart failure. Furthermore, we have also shown that in patients with severe congestive heart failure, both α1- and α2-adrenoceptor responsiveness is decreased in the dorsal hand veins. The decreased vascular a-adrenergic function may serve as an important mechanism to protect against the excessive vasoconstriction in end-stage heart failure. Although long-term treatment with α1-adrenergic antagonists in patient with congestive heart failure has not been accompanied by an improvement in clinical status, exercise capacity, or survival, further understanding of the α-adrenergic system is important in interpreting neurohumoral and vascular changes in patients with severe heart failure.

Congestive heart failure (CHF) is characterized by increased activity of the sympathetic nervous system. The increased sympathetic tone and neurohormonal activation contribute importantly to vasoconstriction through the activation of vascular α-adrenoceptors in CHF. This vasoconstriction may maintain blood pressure acutely, but chronically the increased afterload will depress cardiac function and contribute to progressive deterioration. The α-adrenergic system plays an important role in the control of vascular resistance. Recently there have been studies on the pathophysiologic changes that may occur in the α-adrenoceptors in patients with CHF. The purpose of this article is to review the physiologic function of the α-adrenergic system and recent developments demonstrating functional changes not only in animal models of CHF but also in patients with CHF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Insel PA. Structure and function of alpha-adrenergic receptors. Am J Med 87(Suppl 2A): 12s-18s, 1989.

    Google Scholar 

  2. Minneman KP. α1-Adrenergic receptor subtypes, inositol phosphates, and sources of cell Ca2+. Pharmacol Rev 40:87–119, 1988.

    PubMed  CAS  Google Scholar 

  3. Ford APPW, Williams TJ, Blue DR, Clarke DE. α1-Adrenoceptor classification: Sharpening Occam’ s razor. Trend Pharmacol Sci 15:167–170, 1994.

    Article  CAS  Google Scholar 

  4. Oshita M, Kigoshi S, Muramatsu I. Pharmacological characterization of two distint α1-adrenoceptor subtypes in rabbit thoracic aorta. Br J Pharmacol 108:1071–1076, 1993.

    Article  PubMed  CAS  Google Scholar 

  5. MacKinnon AC, Spedding M, Brown CM. α2-Adrenoceptors: More subtypes but fewer functional differences. Trends Pharmacol Sci 15:119–123, 1994.

    Article  PubMed  CAS  Google Scholar 

  6. Faber J, Ikeoka K, Leech C, Nishigaki K, Ohyanagi M, Ping P. Vascular smooth muscle α-adrenoceptor distribution and control of resistance, terminal arteriole and capacitance vessels. In: Resistance Arteries, Structure and function. Mulvany MJ, Aalkjar C, Heagerty AM, Nyborg NCB, Strandgaard S (eds). Excepta Medica, 1991, pp 266–269.

    Google Scholar 

  7. Toda N. Alpha adrenergic receptor subtypes in human, mondey, and god cerrebral arteries. J Pharmacol Exp Ther 226:861–868, 1983.

    PubMed  CAS  Google Scholar 

  8. Good AP, Unverferth DV, Leier CV. Hemodynamic responses to different levels of alpha-adrenergic interruption in congestive heart failure. Cardiovasc Drugs Ther 1:529–534, 1988.

    Article  PubMed  CAS  Google Scholar 

  9. Hoffman BB, Lefkowitz RJ. Alpha-adrenergic receptor sub-types. N Engl J Med 302:1390–1396, 1980.

    Article  PubMed  CAS  Google Scholar 

  10. Supple EW, Graham RM, Powell WJ Jr. Direct effects of α2-adrenergic receptor stimulation in intravascular systemic capacity in the dog. Hypertension 11:352–359, 1988.

    Article  PubMed  CAS  Google Scholar 

  11. Blochl-Daum B, Korn A, Wolzt M, Schmidt E, Eichler H-G. In vivo studies on alpha-adrenergic receptor subtypes in human veins. Naunyn Schmiedeberg Arch Pharmacol 344:302–307, 1991.

    Article  CAS  Google Scholar 

  12. Feng QP, Carlsson S, Thoren P, Hedner T. Characteristics of renal sympathetic nerve activity in experimental congestive heart failure in the rat. Acta Physiol Scand 150:259–266, 1994.

    Article  PubMed  CAS  Google Scholar 

  13. Sawutz DG, Lanier SM, Warren CD, Graham RM. Glycosylation of the mammalian α1-adrenergic receptor by complex type N-linked oligosaccharides. Mol Pharmacol 32:565–571, 1987.

    PubMed  CAS  Google Scholar 

  14. Leeb-Lundberg LM, Dickinson KE, Heald SL, Wikberg JE, Hagen PO, BeBernardis JF, Winn M, Arendsen DL, Lefkowitz RJ, Caron MG. Photoaffinity labeling of mammalian alpha-1 adrenergic receptors: Identification of the ligand binding subunit with a high affinity radioiodinated probe, J Biol Chem 259:2579–2587, 1984.

    PubMed  CAS  Google Scholar 

  15. Cotecchia S, Schwinn DA, Randall RR, Lefkowitz RJ, Caron MG, Kobilka BK. Molecular cloning and expression of the cDNA for the hamster αl-adrenergic receptor. Proc Natl Acad Sci USA 85:7159–7163, 1988.

    Article  PubMed  CAS  Google Scholar 

  16. Kobilka BK, Matsui H, Kobilka TS, Yang-Feng TL, Francke U, Caron MG, Lefkowitz RJ, Regan J.W. Cloning, sequencing, and expression of the gene coding for the human platelet alpha2-adrenergic receptor. Science 238:650–656, 1987.

    Article  PubMed  CAS  Google Scholar 

  17. Berridge MJ, Irvine RF. Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321, 1984.

    Article  PubMed  CAS  Google Scholar 

  18. Otani H, Otani H, Das DK. α1-Adrenoceptor-mediated phosphoinositide breakdown and inotropic response in rat left ventricular papillary muscles. Circ Res 62:8–17, 1988.

    Article  PubMed  CAS  Google Scholar 

  19. Meideil RS, Sen A, Henderson SA, Slahetka MF, Chien KR. Alpha1-adrenergic stimulation of rat myocardial cells increases protein synthesis. Am J Physiol 251:H1076–H1084, 1986.

    Google Scholar 

  20. Lee HR, Henderson SA, Reynolds R, Dunnmon P, Yuan D, Chein KR. Alpha1 adrenergic stimulation of cardiac gene transcription in neonatal rat myocardial cells: Effects on myosin light chain-2 gene expression. J Biol Chem 263:7352–7358, 1988.

    PubMed  CAS  Google Scholar 

  21. Mahan LC, McKernan RM, Insel PA. Metabolism of alpha-and beta-adrenergic receptors in vitro and in vivo. Ann Rev Pharmacol Toxicol 27:215–235, 1987.

    Article  CAS  Google Scholar 

  22. Rosenbaum JS, Zera P, Umans VA, Ginsburg R, Hoffman BB. Desensitization of aortic smooth muscle contraction in rats harboring pheochromocytoma. J Pharmacol Exp Ther 238:396–400, 1986.

    PubMed  CAS  Google Scholar 

  23. Leeb-Lundberg LMF, Cotecchia S, Lomasney JW, Debernardis JF, Lefkowitz RJ, Caron MG. Phorbol esters promote alpha1 adrenergic receptor phosphorylation and receptor uncoupling from inositol phospholipid metabolism. Proc Natl Acad Sci USA 82:5651–5655, 1985.

    Article  PubMed  CAS  Google Scholar 

  24. Tsujimoto G, Honda K, Hoffman BB, Hashimoto K. Desensitization of postjunctional α1-and α2-adrenergic receptor-mediated vasopressor responses in rat laboring pheochromocytoma. Circ Res 61:86–98, 1987.

    Article  PubMed  CAS  Google Scholar 

  25. Story DD, Briley MS, Langer SZ. The effects of chemical sympathectomy with 6-hydro-xydopamine on alpha-adrenoceptor and muscarinic cholinoceptor binding in rat heart ventricle. Eur J Pharmacol 57:423–426, 1979.

    Article  PubMed  CAS  Google Scholar 

  26. Delaney GA, Arnold JMO, Teasell RW, Feng QP. Alpha-adrenoceptor responsiveness of dorsal foot veins in quadriplegic patients with autonomic dysreflexia (abstract). Clin Invest Med 16:B110, 1993.

    Google Scholar 

  27. Arnold JMO, Teasell RW, MacLeod AP, Brown JK, Carruthers SL. Increased venous alpha adrenoceptor responsiveness in patients with reflex sympathetic dystrophy. Ann Intern Med 118:619–621, 1993.

    PubMed  CAS  Google Scholar 

  28. Gilman AG. G proteins and dual control of adenylate cyclase. Cell 36:577–579, 1984.

    Article  PubMed  CAS  Google Scholar 

  29. Adeagbo ASO, Malik KU. Mechanism of vascular actions of prostacyclin in the rat isolated perfused mesenteric arteries. J Pharmacol Exp Ther 252:26–34, 1990.

    PubMed  CAS  Google Scholar 

  30. Pfeffer MA, Braunwald E. Ventricular remodelling after myocardial infarction: Experimental observations and clinical implications. Circulation 81:1161–1172, 1990.

    Article  PubMed  CAS  Google Scholar 

  31. Francis GS, Goldsmith SR, Levine TB, Olivari MT, Cohn JN. The neurohumoral axis in congestive heart failure. Ann Intern Med 101:370–377, 1984.

    PubMed  CAS  Google Scholar 

  32. Abboud FM, Heistad DD, Mark AL, Schmid PG. Reflex control of the peripheral circulation. Prog Cardiovasc Dis 18:371–403, 1979.

    Article  Google Scholar 

  33. Hasking GJ, Esler MD, Jenings GL, Burton D, Korner PI. Norepinephrine spillover to plasma in patients with congestive heart failure: Evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation 73:615–621, 1986.

    Article  PubMed  CAS  Google Scholar 

  34. Leimbach WN, Wallin BG, Victor GR, Aylward PE, Sundlof G, Mark AL. Direct evidence from intraneural recordings of increased central sympathetic outflow in patient with heart failure. Circulation 73:913–919, 1986.

    Article  PubMed  Google Scholar 

  35. Schenk EA, Moss AJ. Cardiovascular effects of sustained norepinephrine infusion: II. Morphology. Circ Res 18:605–615, 1966.

    Article  CAS  Google Scholar 

  36. Szakaes JE, Cannon A. L-norepinephrine myocarditis. Am J Clin Pathol 30:425–434, 1956.

    Google Scholar 

  37. Downing SE, Lee JC. Contribution of alpha-adrenoceptor activation to the pathogenesis of norepinephrine cardiomyopathy. Circ Res 52:471–478, 1983.

    Article  PubMed  CAS  Google Scholar 

  38. Bhagat B, Sullivan JM, Fischer VW, Nadel EM, Dhalla NS. cAMP and isoproterenolinduced myocardial injury in rats. Rev Adv Stud Cardiac Struct Metab 12:465–470, 1978.

    CAS  Google Scholar 

  39. Hamra M, Rosen MR. α-Adrenergic receptor stimulation during simulated ischemia and reperfusion in canine purkinge fibers. Circulation 78:1495–1502, 1988.

    Article  PubMed  CAS  Google Scholar 

  40. Corr PB, Heathers GP, Yamada KA. Mechanisms contributing to the arrhythmogenic influences of alpha1-adrenergic stimulation in the ischémie heart. Am J Med 87(Suppl 2A):19s-25s, 1989.

    Google Scholar 

  41. Cohn JN, Archibald DG, Ziesche S, Fransiosa JA, Harston WE, Tristani FE, Dunkman WB, Jacobs W, Francis GS, Flohr KH, Goldman S, Cobb FR, Shah PM, Saunders R, Fletcher RD, Loeb HS, Hughes VC, Baker B. Effect of vasodilator therapy on mortality in chronic congestive heart failure. Results of a Veterans Administration Cooperative Study (V-HeFT). N Eng J Med 314:1547–1552, 1986.

    Article  CAS  Google Scholar 

  42. Heilbrunn SM, Shaw P, Bristow MR, Valantine JA, Ginsburg R, Fowler MB. Increased β-receptor density and improved hemodynamic response to catecholamine stimulation during long-term metoprolol therapy in heart failure from dilated cardiomyopathy. Circulation 79:483–490, 1989.

    Article  PubMed  CAS  Google Scholar 

  43. Gilbert EM, Sandoval A, Larrabee P, Renlund DG, O’ Connell JB, Bristow MR. Lisinopril lowers cardiac adrenergic drive and increases β-receptor density in the failing human heart Circulation 88:472–480, 1993.

    Article  PubMed  CAS  Google Scholar 

  44. Waagstein F, Bristow MR, Swedberg K, Camerini F, Fowler MB, Silver MA, Gilbert EM, Johnson MR, Gross FG, Hjalmarson A, for the Metoprolol in Dilated Cardiomyopathy (MDC) Trial Study Group. Beneficial effects of metoprolol in idiopathic dilated cardiomyopathy. Lancet 342:1441–1446, 1993.

    Article  PubMed  CAS  Google Scholar 

  45. CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure: Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med 316:1429–1435, 1987.

    Article  Google Scholar 

  46. SOLVD Investigators. Effect of enalapril on survival in patients with reduced left ventricular ejection fraction and congestive heart failure. N EnglJ Med 325:293–302, 1991.

    Article  Google Scholar 

  47. Pfeffer MA, Braunwald E, Moyé CA, Basta L, Brown EJ Jr, Cuddy TE, Davis BR, Geltman EM, Goldman S, Flaker GC, Klein M, Lamas GA, Packer M, Rouleau J, Rouleau JL, Rutherford J, Wertheimer JH, Hawkins CM, on hehalf the SAVE investigators. The effects of captopril on mortality and morbidity in patients with left ventricular dysfunction following myocardial infarction. New Engl J Med 327:669–677, 1992.

    Article  PubMed  CAS  Google Scholar 

  48. Bristow MR, Ginsburg R, Fowler M, Minobe W, Rasmussen R, Zera P, Menlove R, Shah P, Stinson E. β l-and β 2-adrenergic receptor subpopulations in normal and fialing human ventricular myocardium: Coupling of both receptor subtypes to muscle contraction and selective β l-receptor downregulation in heart failure. Circ Res 59:297–309, 1986.

    Article  PubMed  CAS  Google Scholar 

  49. Bristow MR, Andersson FL, Port JD, Skerl L, Hershberger RE, Larrabee P, O’ Connell JB, Renlund DG, Volkman K, Murray J, Feldman AM. Differences in β-adrenergic neuroef-fector mechanisms in ischemic versus idiopathic dilated cardiomyopathy. Circulation 84: 1024–1039, 1991.

    Article  PubMed  CAS  Google Scholar 

  50. Bristow MR, Ginsburg R, Minobe W, Cubicciotti RS, Sagerman WS, Lurie K, Billingham ME, Harrison DC, Stinson EB. Decreased catccholamine sensitivity and beta-adrenergic receptor density in failing human hearts. N Engl J Med 307:205–211, 1982.

    Article  PubMed  CAS  Google Scholar 

  51. Denniss AR, Colucci WS, Allen PD, Marsh JD. Distribution and function of human ventricular beta-adrenergic receptors in congestive heart failure. J Mol Cell Cardiol 21:651–660, 1989.

    Article  PubMed  CAS  Google Scholar 

  52. Fowler MB, Laser JA, Hopkins GL, Minobe W, Bristow MR. Assessment of the β-adrenergic receptor pathway in the intact failing human heart: Progressive receptor downregulation and subsensitivity to agonist response. Circulation 74:1290–1302, 1986.

    Article  PubMed  CAS  Google Scholar 

  53. Colucci WS, Denniss AR, Leatherman GF, Quigg RJ, Ludmer PJ, Marsh JD, Gauthier DF. Intracoronary infusion of dobutamine to patients with and without severe congestive heart failure. J Clin Invest 81:1103–1110, 1988.

    Article  PubMed  CAS  Google Scholar 

  54. Woodley SL, Gilbert EM, Anderson JL, O’ Connell JB, Deitchman D, Yanowitz FG, Mealey PC, Volkman K, Renlund DG, Menlove R, Bristow MR. β-Blockade with bucindolol in heart failure caused by ischemic versus idiopathic dilated cardiomyopathy. Circulation 84:2426–2441, 1991.

    Article  PubMed  CAS  Google Scholar 

  55. Creager MA, Quigg RJ, Ren JC, Roddy MA, Colucci WS. Limb vascular responsiveness to β-adrenergic receptor stimulation in patients with congestive heart failure. Circulation 83: 1871–1879, 1991.

    Article  Google Scholar 

  56. Frey MJ, Lanoce V, Molinoff FB, Wilson JR. Skeletal muscle β-receptors and isoproterenol-stimulated vasodilation in canine heart failure. J Appl Physiol 67:2026–2031, 1989.

    PubMed  CAS  Google Scholar 

  57. Kiuchi K, Sato N, Shannon RP, Vatner DE, Morgan K, Vatner SF. Decreased β-adrenergic receptor-and endothelium-mediated vasodilation in conscious dogs with’ eart failure. Circ Res 73:1013–1023, 1993.

    Article  PubMed  CAS  Google Scholar 

  58. Goldsmith SR, Francis GS, Cohn JN. Norepinephrine infusions in congestive heart failure. Am J Cardiol 56:802–804, 1985.

    Article  PubMed  CAS  Google Scholar 

  59. Binkely PF, Lewe RF, Unverferth DV, Leier CV. Preservation of the end-systolic pressure/end-systolic dimension relation following pindolol in congestive heart failure. Am Heart J 115:1245–1250, 1988.

    Article  Google Scholar 

  60. Silverberg AB, Shah SD, Haymond MW, Cryer PE. Norepinephrine: Hormone and neuro-transmitter in man. Am J Physiol 234:E252–E256, 1978.

    PubMed  CAS  Google Scholar 

  61. Weiss RJ, Tobes M, Wertz CE, Smith CB. Platelet alpha2-adrenoceptors in chronic congestive heart failure. Am J Cardiol 52:101–105, 1983.

    Article  PubMed  CAS  Google Scholar 

  62. Sullivan MJ, Binkley PF, Unverferth DV, Ren JH, Boudoulas H, Bashore TM, Merola AJ, Leier CV. Prevention of bedrest-induced physical deconditiomng by daily dobutamine infusions: Implications for drug-induced physical conditioning. J Clin Invest 76:1632–1642, 1985.

    Article  PubMed  CAS  Google Scholar 

  63. Forster C, Armstrong PW. Pacing-induced heart failure in the dog: Evaluation of peripheral vascular a-adrenoceptor subtypes. J Cardiovasc Pharmacol 16:708–718, 1990.

    Article  PubMed  CAS  Google Scholar 

  64. Teerlink JR, Gray GA, Clozel M, Clozel JP. Increased vascular responsiveness to norepen-ephrine in rats with heart failure is endothelium dependent. Circulation 89:393–401, 1994.

    Article  PubMed  CAS  Google Scholar 

  65. Feng QP, Carlsson S, Thoren P, Hedner T. Effects of clonidine on renal sympathetic nerve activity, natriuresis and diuresis in chronic congestive heart failure rats. J Pharmacol Exp Ther 261:1129–1135, 1992.

    PubMed  CAS  Google Scholar 

  66. Feng QP, Lu XR, Bergdahl A, Sun XY, Edvinsson L, Hedner T. Vascular α2-adrenoceptor function is decreased in rats with heart failure (abstract). J Mol Cell Cardiol 26:161, 1994.

    Google Scholar 

  67. Arnold JMO, MacLeod AP, Lui AS, Brown JE, Feldman RD, Kostuk WJ. α-and β-adrenoceptor mediated venous responsiveness of dorsal hand veins in patients with severe heart failure (abstract). Br J Clin Pharm 31:222, 1991.

    Google Scholar 

  68. Feng QP, Callow ID, Arnold JMO. Venous α1-and α2-adrenoceptor responsiveness in patients with heart failure and normal subjects (abstract) Can J Cardiol 10(Suppl A):73A, 1994.

    Google Scholar 

  69. Feng QP, Callow ID, Arnold JMO. Alpha-1 and alpha-2 adrenoceptor responsiveness heart failure with severe or mild to moderate left ventricular dysfuntion (abstract). Circulation 90:1–491, 1994.

    Article  Google Scholar 

  70. Angus JA, Ferrier CP, Sudhir K, Kaye DM, Jennings GL. Impaired contraction and relaxation in skin resistance arteries from patients with congestive heart failure. Cardiovasc Res 27:204–201, 1993.

    Article  PubMed  CAS  Google Scholar 

  71. Creager MA, Hirsch AT, Dzau VJ, et al. Baroreflex regulation of regional blood flow in congestive heart failure. Am J Physiol 258:H1409–H1414, 1990.

    PubMed  CAS  Google Scholar 

  72. Kubo SH, Rector TS, Heifetz SM, Cohn JN. α2-receptor-mediated vasoconstriction in patients congestive heart failure. Circulation 80:1660–1667, 1989.

    Article  PubMed  CAS  Google Scholar 

  73. Indolfi C, Maione A, Volpe M, Rapacciuolo A, Ceravolo R, Rendina V, Condorelli M, Chiariello M. Forearm vascular responsiveness to α1-and α2-adrenoceptor stimulation in patients with congestive heart failure. Circulation 90:17–22, 1994.

    Article  PubMed  CAS  Google Scholar 

  74. Starke K. Presynaptic α1-autoreceptors. Rev Physiol Biochem Pharmacol 107:73–146, 1987.

    Article  PubMed  CAS  Google Scholar 

  75. Watanabe H, Ito H, Minatoguchi S, Imai Y, Koshiji M, Suzuki S, Ishimura K, Hirakawa S. Increase in plasma noradrenaline concentration after the administration of phentolamine in the patients with “latent” left-sided heart failure. Jpn Circ J 53:1497–1505, 1989.

    Article  PubMed  CAS  Google Scholar 

  76. Zimmerman BG. Actions of angiotensin on adrenergic nerve endings. Fed Proc 37:199–202, 1978.

    PubMed  CAS  Google Scholar 

  77. Minatoguchi S, Majewski H. Modulation of norepinephrine release in Adriamycin-induced heart failure in rabbits: Role of presynaptic α2-adrenoceptors and presynaptic angiotensin II receptors. J Cardiovasc Pharmacol 23:438–445, 1994.

    PubMed  CAS  Google Scholar 

  78. Majewski H. Angiotensin II and noradrenergic transmission in the pithed rat. J Cardiovasc Pharmacol 14:622–630, 1989.

    Article  PubMed  CAS  Google Scholar 

  79. Packer M, Miller J, Gorlin R, Herman MV. Hemodynamic and clinical tachyphylaxis to prazosin-mediated afterload reduction in severe chronic congestive heart failure. Circulation 59:531–539, 1979.

    Article  PubMed  CAS  Google Scholar 

  80. Seth L, Galie N, Casebolt P, Gimenez H, Malloy M, Franciosa JA. Indoramin in heart failure: Possible adverse effects on hemodynamics and exercise capacity. Clin Pharmacol Ther 40:567–574, 1986.

    Article  PubMed  CAS  Google Scholar 

  81. Colucci WS, Williams GH, Braunwald E. Increased plasma norepinephrine levels during prazosin therapy for severe congestive heart failure. Ann Intern Med 93:452–453, 1980.

    PubMed  CAS  Google Scholar 

  82. Packer M, Medina N, Yushak M. Role of the renin-angiotensin system in the development of hemodynamic and clinical tolerance to long-term prazosin therapy in patients with severe chronic heart failure. J Am Coll Cardiol 7:671–680, 1986.

    Article  PubMed  CAS  Google Scholar 

  83. Olivari MT, Levine TB, Cohn JN. Acute hemodynamic and hormonal effects of central versus peripheral sympathetic inhibition in patients with congestive heart failure. J Cardiovasc Pharmacol 8:973–977, 1986.

    Article  PubMed  CAS  Google Scholar 

  84. Baranowska B, Guthowska J, Cantin M, Genest J. Plasma immunoreactive atrial natriuretic factor (IR-ANF) increases markedly after α2-adrenergic stimulation with clonidine in normally hydrated rats. Biochem Biophys Res Commun 143:159–163, 1987.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Feng, QP., Arnold, J.M.O. (1995). Vascular α-Adrenergic Function in Congestive Heart Failure. In: Singal, P.K., Dixon, I.M.C., Beamish, R.E., Dhalla, N.S. (eds) Mechanisms of Heart Failure. Developments in Cardiovascular Medicine, vol 167. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2003-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2003-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5827-5

  • Online ISBN: 978-1-4615-2003-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics