Skip to main content

Nitric Oxide: Friend and Foe in Myocardial Ischemia and Reperfusion

  • Chapter
Mechanisms of Heart Failure

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 167))

  • 75 Accesses

Summary

Nitric oxide (NO) may have beneficial as well as injurious effects on myocardial function following ischemia and reperfusion. The exact reason for this discrepancy is not clear, although it appears to be dependent on the model and end point for the assessment of ischemia/reperfusion injury. The friendly role of NO is attributable to the preservation of endothelial function, inactivation of -O¯2 and attenuation of neutrophil accumulation following ischemia/reperfusion. The injurious effect of NO seems to be due to .OH radical generation via the peroxinitrite pathway, although to date the production of peroxynitrous acid in vivo during ischemia/reperfusion has not been demonstrated. Pearson et al. [1] reported that hypoxia enhances the production of an endothelial-derived constricting factor, which was proposed to be peroxynitrite. Further studies are required to resolve the controversial role of this important biologic messenger in myocardial ischemia/reperfusion.

Since the discovery by Furchgott and Zawadzki that endothelium modulates the response of blood vessels to acetylcholine (ACh) in vitro by releasing endothelium-dependent relaxing factor (EDRF), it has become apparent that EDRF participates in the regulation of blood flow through different organs under resting conditions and in the response to many humoral, neural, and mechanical stimuli [2–7]. Due to the identical pharmacologic properties of nitric oxide (NO) and EDRF, it is widely accepted that NO is one of the EDRF compounds. Both have a very short half-life (5–6 sec), can be inactivated by oxygen radicals [8], and cause heme-dependent stimulation of the cyclic GMP (cGMP) in vascular smooth muscle, leading to vasodilatation at both the arterial and venous ends. Nitric oxide is enzymatically synthesized in the presence of the nitric oxide synthase (NOS). Two types of NOS enzymes have been identified: 1) Ca2+ dependent which is found in vascular endothelium, brain, platelets, and adrenal glands; and 2) Ca2+ independent NOS, found in macrophages, neutrophils, liver parenchymal cells, and vascular endothelial and smooth muscle cells. Its wide distribution in the body implies its different physiologic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pearson PJ, Lin PJ, Schaff HV. Production of endothelium derived contracting factor is enhanced after coronary reperfusion. Ann Thorac Surg 288:481–487, 1991.

    Google Scholar 

  2. Breslow MJ, Tobin JR, Bredt DS, Ferris CD, Snyder SH, Traysman RJ. Role of nitric oxide in renal medullary vasodilation during catecholamine secretion. Eur J Pharmacol 210:105–106, 1992.

    Article  PubMed  CAS  Google Scholar 

  3. Kostic MM, Schrader J. Role of nitric oxide in reactive hyperemia of the guinea pig heart. Circ Res 70:208–212, 1992.

    Article  PubMed  CAS  Google Scholar 

  4. Kozniewska E, Oseka M, Stys T. Effects of endothelium-derived nitric oxide on cerebral circulation during normoxia and hypoxia in the rat. J Cereb Blood Flow Metab 12:311–317, 1992.

    Article  PubMed  CAS  Google Scholar 

  5. Pelc LR, Gross GL, Warltier DC. Preferential increase in subendocardial perfusion produced by endothelium-dependent vasodilators. Circulation 76:191–200, 1987.

    Article  PubMed  CAS  Google Scholar 

  6. Pique JM, Whittle BJR, Esplugues JV. The vasodilator role of endogenous nitric oxide in the rat gastric microciculation. Eur J Pharmacol 174:293–296, 1989.

    Article  PubMed  CAS  Google Scholar 

  7. Vallance P, Collier J, Moncada S. Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet 2:997–1000, 1989.

    Article  PubMed  CAS  Google Scholar 

  8. Rubanyi GM, Ho EH, Cantor EH, Lumma WC, Botelho LHP. Cytoprotective function of nitric oxide-inactivation of Superoxide radicals produced by human leukocytes. Biochem Biophys Res Commun 181:1392–1397, 1991.

    Article  PubMed  CAS  Google Scholar 

  9. Radomski MW, Palmer RJ, Moncada S. The role of nitric oxide and cGMP in platelet adhesion to vascular endothelium. Biochem Biophys Res Commun 148:1482–1489, 1987.

    Article  PubMed  CAS  Google Scholar 

  10. Vanhoutte P. Endothelium and control of vascular function. Hypertension 13:658–667, 1989.

    Article  PubMed  CAS  Google Scholar 

  11. Radomski MW, Palmer RJ, Moncada S. An L-Arginine: nitric oxide pathway present in human platelets regulates aggregation. Proc Natl Acad Sci USA 87:5193–5197, 1990.

    Article  PubMed  CAS  Google Scholar 

  12. Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 88:4651–4655, 1991.

    Article  PubMed  CAS  Google Scholar 

  13. Yates MT, Lambert LE, Whitten JP, McDonald I, Mano M, Ku G, Mao SJT. A protective role for nitric oxide in the oxidative modification of low density lipoproteins by mouse macrophages. FEBS Lett 309:135–138, 1992.

    Article  PubMed  CAS  Google Scholar 

  14. Garg UC, Hassid A. Nitric oxide-generating vasodilator and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of culture rat vascular smooth muscle cells. J Clin Invest 83:1775–1777, 1989.

    Article  Google Scholar 

  15. Johnson GI III, Tsao PS, Lefer AM. Cardioprotective effects of authentic nitric oxide in myocardial ischemia with reperfusion. Crit Care Med 19:244–252, 1991.

    Article  PubMed  Google Scholar 

  16. Ku DD. Coronary vascular reacitivity after acute myocardial ischemia. Science 218:576–578, 1982.

    Article  PubMed  CAS  Google Scholar 

  17. Mehta JL, Nichols WW, Donnelly WM, Lawson DL, Saldeen TGP. Impaired canine responses to acetylcholine and bradykinin after occlusion-reperfusion. Circ Res 64:43–54, 1993.

    Article  Google Scholar 

  18. Jones LF, Brody MJ. Coronary blood flow in rats is dependent on the release of vascular nitric oxide. J Pharmacol Exp Ther 260:35–41, 1991.

    Google Scholar 

  19. Niu X, Smith CW, Kubes P. Intracellular oxidative stresss induced by nitric oxide synthesis inhibition increases endothelial cell adhesion to neutrophils. Circ Res 74:1133–1140, 1994.

    Article  PubMed  CAS  Google Scholar 

  20. Armstrong PW, Walker DC, Burton JR, Parker JO. Vasodilator therapy in acute myocardial infarction: a comparison of sodium nitroprusside and nitroglycerin. Circulation 52:1118–1122, 1975.

    Article  PubMed  CAS  Google Scholar 

  21. Bussman WD, Passek D, Seidel W, Kaltenbach M. Reduction of CK and CK-MB indexes of infarct size by intravenous nitroglycerin. Circulation 63:615–622, 1981.

    Article  Google Scholar 

  22. Flaherty JT, Becker LC, Bulkly BH, Weiss JL, Gerstenblith G, Kallman M, Silverman KJ, Wei JY, Pitt B, Weisfeldt ML. A randomized prospective trial of intravenous nitroglycerin in patients with acute myocardial infarction. Circulation 68:576–588, 1993.

    Article  Google Scholar 

  23. Johnson GI III, Tsao PS, Mulloy D, Lefer AM. Cardioprotective effects of acidified sodium nitrite in myocardial ischemia with reperfusion. J Pharmacol Exp Ther 252:35–41, 1990.

    PubMed  CAS  Google Scholar 

  24. Siegfried MR, Erhardt J, Rider T, Ma XL, Lefer AM. Cardioprotection and attenuation of endothelial dysfunction by organic nitric oxide donors in myocardial ischemia-reperfusion. J Pharmacol Exp Ther 260:668–675, 1992.

    PubMed  CAS  Google Scholar 

  25. Weyrich AS, Ma XL, Lefer AM. The role of L-arginine in ameliorating reperfusion injury after myocardial ischemia in the cat. Circulation 86:279–288, 1992.

    Article  PubMed  CAS  Google Scholar 

  26. Williams MW, Taft CS, Ramnauth S, Zhao ZQ. Endogenous nitric oxide protects against myocardial reperfusion injury in the rabbit (abstract). FASEB J 8:A559, 1994.

    Google Scholar 

  27. Sato H, Zhao ZQ, McGee DS, Hammon JW Jr, Vinten-Johansen J. L-arginine supplementation during surgical revascularization of myocardial ischemia reduces infarction and coronary endothelial injury (abstract). FASEB J 8:A854, 1994.

    Google Scholar 

  28. Hasebe N, Shen YT, Vatner SF. Inhibition of endothelium-derived relaxing factor enhances myocardial stunning in concious dogs. Circulation 88:2862–2871, 1993.

    Article  PubMed  CAS  Google Scholar 

  29. Zweier JL. Measurement of superoxide-derived free radicals in the reperfused heart. J Biol Chem 263:1353–1357, 1988.

    PubMed  CAS  Google Scholar 

  30. Woditsch I, Schrör K. Prostacyclin rather than endogenous nitric oxide as a tissue protective factor in myocardial ischemia. Am J Physiol 263:H1390–H1396, 1992.

    PubMed  CAS  Google Scholar 

  31. Moncada S, Palmer RMJ, Higgs EA. Nitric oxide physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142, 1991.

    PubMed  CAS  Google Scholar 

  32. Freeman BA, Crapo JD. Biology of disease. Free radicals and tissue injury. Labo Investi 47:412–426, 1982.

    CAS  Google Scholar 

  33. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and Superoxide. Proc Natl Acad Sci USA 87:1620–1624, 1990.

    Article  PubMed  CAS  Google Scholar 

  34. Radi R, Beckman JS, Bush KM, Freeman BA. Peroxynitrite-induced membrane lipid peroxidation: The cytotoxic potential of Superoxide and nitric oxide. Arch Biochem Biophys 288:481–487, 1991.

    Article  PubMed  CAS  Google Scholar 

  35. Matheis G, Sherman MP, Buckberg GD, Haybron DM, Young HH, Ignarro LJ. Role of Larginine-nitric oxide pathway in myocardial reoxygenation injury. Am J Physiol 262: H616–H620, 1992.

    PubMed  CAS  Google Scholar 

  36. Brown JM, Grosso MA, Tarada GJ, Whitman GJ, Banerjee A, White CW, Harken AH, Repine JE. Endotoxin pretreatment increases endogenous myocardial catalase activity and decreases ischemia-reperfusion injury of isolated rat heart. Proc Natl Acad Sci USA 86: 2516–2520, 1989.

    Article  PubMed  CAS  Google Scholar 

  37. Myers ML, Bolli R, Lekich RF, Hartley CJ, Michael LH, Roberts R. N-2-mercaptopro-pionylglycine improves recovery of myocardial function following reversible regional ischemia. J Am Coll Cardiol 8:1161–1168, 1986.

    Article  PubMed  CAS  Google Scholar 

  38. Patel VC, Yellon DM, Singh KJ, Neild GH, Woolfson RG. Inhibition of nitric oxide limits infarct size in the in situ rabbit heart. Biochem Biophys Res Commun 194:234–238, 1993.

    Article  PubMed  CAS  Google Scholar 

  39. Naseem SA, Kontos MC, Rao PS, Jesse RL, Hess ML, Kukreja RC. Sustained inhibition of nitric oxide by NG-nitro-1-arginine improves myocardial function following ischemia/reperfusion in isolated rat heart. J Mol Cell Cardiol 1995, (in press).

    Google Scholar 

  40. Bernier M, Hearse DJ, Manning AS. Reperfusion-induced arrhythmias and oxygen-derived free radicals. Circ Res 58:331–340, 1986.

    Article  PubMed  CAS  Google Scholar 

  41. Kukreja RC, Hess ML. The oxygen free radical system: From equations through membrane protein-interactions to cardiovascular injury and protection. Cardiovasc Res 26:641–655, 1992.

    Article  PubMed  CAS  Google Scholar 

  42. Yamabe H, Okumura K, Ishizaka H, Tsuchiya T, Yasue H. Role of endothelium-derived nitric oxide in myocardial reactive hyperemia. Am J Physiol 263:H8–H17, 1992.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kukreja, R.C. (1995). Nitric Oxide: Friend and Foe in Myocardial Ischemia and Reperfusion. In: Singal, P.K., Dixon, I.M.C., Beamish, R.E., Dhalla, N.S. (eds) Mechanisms of Heart Failure. Developments in Cardiovascular Medicine, vol 167. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2003-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2003-0_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5827-5

  • Online ISBN: 978-1-4615-2003-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics