Skip to main content

Factors Responsible for Left Ventricular Underfilling in Pure Mitral Stenosis

  • Chapter
Mechanisms of Heart Failure

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 167))

  • 69 Accesses

Summary

Our aim was to estimate factors influencing left ventricular (LV) end-diastolic volume index (EDVI) and stroke volume index (SVI) in pure mitral stenosis (MS) with preserved sinus rhythm. We analyzed the records of 42 patients (aged 20-40 years) with isolated MS in sinus rhythm who underwent routine diagnostic cardiac catheterization. The group was divided into two subgroups, A and B [those with an EDVI below and above its mean value (71.2 ml/m2), respectively]. In the whole group, SVI and EDVI were strongly correlated (r = 0.84, p < 0.0001), whereas no correlation between SVI and end-systolic volume index (ESVI) was found. As compared with group B, group A subjects had significantly lower SVI, EDVI, ESVI, ejection fraction, and LV minimal pressure as well as a higher heart rate and LV chamber stiffness constant. Group A also exhibited an insignificant tendency to higher pulmonary pressures and pulmonary vascular resistance. Groups A and B had similar values of all other analyzed variables, including mitral valve area. We conclude that LV underfilling in pure MS is related not only to a narrowed mitral orifice but also to other factors.

As compared with healthy subjects, left ventricular (LV) end-diastolic volume (EDV) was shown to be decreased [1,2], normal [3], or increased [4,5] in isolated mitral stenosis (MS), which indicates a large relative interindividual variability of EDV in this disease. Assuming that LV underfilling would be the principal determinant of low EDV in MS, the MS subjects with depressed LV stroke volume (SV) would be those with a low EDV. The importance of EDV as a marker of LV underfilling has been reinforced by the fact that percutaneous balloon mitral valvuloplasty results in acute EDV and SV increases only in subjects with an EDV lower than 100 ml [2]. In addition, Goto et al. [6] revealed a close correlation between SV and EDV in pure MS both before and after valvuloplasty. However, this does not exclude the possibility that in some MS patients intrinsic abnormality of LV contraction and/or increased afterload may result in a secondary increase in EDV so that EDV does not reflect LV underfilling but instead exhibits a compensatory rise aimed at counteracting the SV depression [4,5,7]. The aim of the present study was to estimate factors influencing EDV and SV in pure MS with preserved sinus rhythm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gash AK, Carabello BA, Cepin D, Spann JF. Left ventricular ejection performance and systolic function in patients with mitral stenosis. Circulation 67:148–154, 1983.

    Article  PubMed  CAS  Google Scholar 

  2. Liu CP, Ting CT, Yang TM, Chen JW, Chang MS, Maughan WL, Lawrence W, Kass DA. Reduced left ventricular compliance in human mitral stenosis. Role of reversible internal constraint. Circulation 85:1447–1456, 1992.

    CAS  Google Scholar 

  3. Ahmed SS, Regan TJ, Fiore JJ, Levinson GE. The state of the left ventricular myocardium in mitral stenosis. Am Heart J 94:28–36, 1977.

    Article  PubMed  CAS  Google Scholar 

  4. Silverstein DM, Hansen DP, Ojiambo HP, Griswold HE. Left ventricular function in severe pure mitral stenosis as seen at the Kenyatta National Hospital. Am Heart J 99:727–733, 1980.

    Article  PubMed  CAS  Google Scholar 

  5. Mohan JC, Khalilullah M, Arora R. Left ventricular intrinsic contractility in pure mitral stenosis. Am J Cardiol 64:240–242, 1989.

    Article  PubMed  CAS  Google Scholar 

  6. Goto S, Handa S, Akaishi M, Abe S, Ogawa S. Left ventricular ejection performance in mitral stenosis, and effects of successful percutaneous transvenous mitral commissurotomy. Am J Cardiol 69:233–237, 1992.

    Article  PubMed  CAS  Google Scholar 

  7. Snyder RW, Lange RA, Willard JE, Glamann B, Landau C, Negus BH, Hillis D. Frequency, cause and effect on operative outcome of depressed left ventricular ejection fraction in mitral stenosis. AmJ Cardiol 73:65–69, 1994.

    Article  Google Scholar 

  8. Gorlin R, Gorlin SG. Hydraulic formula for calculation of the area of the stenotic mitral valve, other cardiac valves, and central circulatory shunts. Am Heart J 41:1–29, 1951.

    Article  PubMed  CAS  Google Scholar 

  9. Lange RA, Moore DM, Cigarroa RG, Hillis LD. Use of pulmonary capillary wedge pressure to assess severity of mitral stenosis: Is true left atrial pressure needed in this condition? J Am Coll Cardiol 13:825–829, 1989.

    Article  PubMed  CAS  Google Scholar 

  10. Dodge HT, Sandler H, Ballew DH, Lord JD Jr. Use of biplane angiography for the measurement of left ventricular volume in man. Am Heart J 60:762–776, 1960.

    Google Scholar 

  11. Kennedy JW, Trenholme SE, Kasser IS. Left ventricular volume and mass from single plane cineangiocardiogram. A comparison of anteroposterior and right anterior oblique methods. Am Heart J 80:343–352, 1970.

    Article  PubMed  CAS  Google Scholar 

  12. Rackley CE, Dodge HT, Coble YD Jr, Hay RE. Method for determining left ventricular mass in man. Circulation 29:666, 1964.

    Article  PubMed  CAS  Google Scholar 

  13. Levine HJ, Brittman NA. Force-velocity relationship in the intact dog heart. J Clin Invest 43:1383–1390, 1964.

    Article  PubMed  CAS  Google Scholar 

  14. Frank MJ, Levinson GE. An index of the contractile state of the myocardium in man. J Clin Invest 47:1615–1626, 1968.

    Article  PubMed  CAS  Google Scholar 

  15. Hugenholtz PA, Kaplan E, Hall E. Determination of left ventricular wall thickness by angiocardiography. Am Heart J 78:513–518, 1969.

    Article  PubMed  CAS  Google Scholar 

  16. Grossman WE, Braunwald E, Mann T, McLaurin LP. Contractile state of the left ventricle in man as evaluated from end-systolic pressure-volume relations. Circulation 56:845–852, 1977.

    Article  PubMed  CAS  Google Scholar 

  17. Cohn PF, Liedtke AJ, Serur J, Sonnenblick EH, Urschel CW. Maximal rate of pressure fall (peak negative dP/dt) during ventricular relaxation. Cardiovasc Res 6:263–269, 1972.

    Article  PubMed  CAS  Google Scholar 

  18. Weiss JL, Fredriksen JW, Weisfeldt ML. Hemodynamic determinants of the time-course of fall in canine left ventricular pressure. J Clin Invest 58:751–760, 1976.

    Article  PubMed  CAS  Google Scholar 

  19. Gaash WH, Cole JS, Quinones MA, Alexander JK. Dynamic determinants of left ventricular diastolic pressure-volume relations in man. Circulation 51:317–323, 1975.

    Article  Google Scholar 

  20. Rackley CE. Quantitative evaluation of left ventricular function by radiographic techniques. Circulation 54:862–879, 1976.

    Article  PubMed  CAS  Google Scholar 

  21. Dabrowski M, Górecka B, Witkowski A, Jodkowski J, Woroszylska M, Rużyłło W. Effect of verapamil on left ventricular diastolic parameters in hypertrophic cardiomyo-pathy. Kardiol Pol 29:345–355, 1986.

    PubMed  CAS  Google Scholar 

  22. Stoddard MF, Pearson AC, Kern MJ, Ratcliff J, Mrosek DG, Labovitz AJ. Influence of alteration in preload on the pattern of left ventricular diastolic filling as assessed by Doppler echocardiography in humans. Circulation 79:1226–1236, 1989.

    Article  PubMed  CAS  Google Scholar 

  23. Gaash WH, Battle WE, Oboler AA, Banas JS Jr, Levine HJ. Left ventricular stress and compliance in man; with special reference to normalized ventricular function curves. Circulation 45:746–762, 1972.

    Article  Google Scholar 

  24. Thomas JD, Choong CYP, Flachskampf FA, Weyman AE. Analysis of the early transmitral Doppler velocity curve: Effect of primary physiologic changes and compensatory preload adjustment. J Am Coll Cardiol 16:644–655, 1990.

    Article  PubMed  CAS  Google Scholar 

  25. Gilbert JC, Glantz SA. Determinants of left ventricular filling and of the diastolic pressure-volume relation. Circ Res 64:827–852, 1989.

    Article  PubMed  CAS  Google Scholar 

  26. Sabbah HN, Anbe DT, Stein PD. Negative interventricular diastolic pressure in patients with mitral stenosis: Evidence of left ventricular diastolic suction. Am J Cardiol 45:562–566, 1980.

    Article  PubMed  CAS  Google Scholar 

  27. Gaash WH, Levine HJ, Quinones MA, Alexander JK. Left ventricular compliance: Mechanisms and clinical implications. Am J Cardiol 38:645–653, 1976.

    Article  Google Scholar 

  28. Mirsky I. Assessment of passive elastic stiffness of cardiac muscle: Mathematical concepts, physiologic and clinical considerations, directions of future research. Prog Cardiovasc Dis 28:277–308, 1976.

    Article  Google Scholar 

  29. Sunamori M, Suzuki A, Harrison CE. Relationship between left ventricular morphology and postoperative cardiac function following valve replacement for mitral stenosis. J Thorac Cardiovasc Surg 85:727–732, 1983.

    PubMed  CAS  Google Scholar 

  30. Grant RP. Architectonics of the heart. Am Heart J 46:405, 1953.

    Article  PubMed  CAS  Google Scholar 

  31. Thomas JD, Wilkins GT, Choong CY. Inaccuracy of the mitral pressure half-time immediately following percutaneous mitral valvotomy: Dependence on transmitral pressure gradient and left atrial and left ventricular compliance. Circulation 78:980–993, 1988.

    Article  PubMed  CAS  Google Scholar 

  32. Louie EK, Rich S, Levitsky S, Brundage BH. Doppler echocardiographic demonstration of differential effects of right ventricular pressure and volume overload on left ventricular geometry and filling. J Am Coll Cardiol 19:84–90, 1992.

    Article  PubMed  CAS  Google Scholar 

  33. Akaishi M, Akizuki S, Onishi S, Gotoh T, Ogana S, Kanamura Y, Nakamura Y. Left ventricular shape and function in patients with chronic right ventricular overloading. J Cardiograph 310:153–161, 1980.

    Google Scholar 

  34. Kirch E. Alterations in size and shape of individual regions of heart in valvular disease. Verh Dtsch Kong Inn Med 41:324–330, 1929.

    Google Scholar 

  35. Harvey RM, Ferrer MI, Samet P, Bader RA, Barder ME, Cournard A, Richard DW. Mechanical and myocardial factors in rheumatic heart disease with mitral stenosis. Circulation 11:531–551, 1955.

    Article  PubMed  CAS  Google Scholar 

  36. Feigenbaum H, Campbell RW, Runsh CM, Steinmetz EF. Evaluation of the left ventricle in patient with mitral stenosis. Circulation 34:462–472, 1966.

    Article  PubMed  CAS  Google Scholar 

  37. Kasalicky J, Hurych S, Widimsky J, Dejdar R, Metys R, Stanek V. Left heart hemodynamics at rest and during exercise in patients with mitral stenosis. Heart J 30:188–195, 1968.

    Article  CAS  Google Scholar 

  38. Kass DA, Midei M, Brinker J, Maughan WL. Influence of coronary occlusion during PTCA on end-systolic and end-diastolic pressure-volume relations in humans. Circulation 81:447–460, 1990.

    Article  PubMed  CAS  Google Scholar 

  39. Gould KL, Trenholrne S, Kennedy JW. In vivo comparison of catheter manometer system with the catheter-tip micromanometer. J Appl Physiol 34:263, 1973.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Surdacki, A., Legutko, J., Turek, P., Dudek, D., Żmudka, K., Dubiel, J.S. (1995). Factors Responsible for Left Ventricular Underfilling in Pure Mitral Stenosis. In: Singal, P.K., Dixon, I.M.C., Beamish, R.E., Dhalla, N.S. (eds) Mechanisms of Heart Failure. Developments in Cardiovascular Medicine, vol 167. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2003-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2003-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5827-5

  • Online ISBN: 978-1-4615-2003-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics