Skip to main content

Rational Problems Associated with the Development of Cellular Approaches in Controlling HIV Spread

  • Chapter
Cell Activation and Apoptosis in HIV Infection

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 374))

Abstract

The priority in elucidation of the problems associated with HIV infection has been mainly determined by experimental feasibility rather than by its importance. Molecular biologists have rapidly produced an impressive body of knowledge about the structure of HIV, but this understanding is not sufficient to explain complex biological effects accompanying viral pathogenesis. Physicians, fourteen years into the epidemic have been left with a confused mixture of AZT, CD4 counts, false promises of vaccines, morbidity charts and nothing else. Immunologists, in their turn, disappointed by the results of their own narrow scope of inquiries for a direct explanation of the pathological effect of the virus, started to look for alternative concepts such as self-inflicted immunopathology mediated through the capacity of HIV to mimic host antigens and to trigger autoimmune responses. Although this idea was proposed even before HIV was implicated as a cause of AIDS, mainstream research has been oriented toward goals that were easier to grasp. As a result, little progress has been made to adopt the viral ‘kamikaze’ phenomenon to the development of a meaningful therapeutic strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rosenau W, Moon HD. Lysis of homologous cells by sensitized lymphocytes in tissue culture. J Natl Cancer Inst 27:471–83, 1961.

    PubMed  CAS  Google Scholar 

  2. Martz E. Early steps in specific tumor lysis by sensitized mouse T-lymphocytes I. Resolution and characterization. J Immunol 115:261–7, 1975.

    PubMed  CAS  Google Scholar 

  3. Riviere Y, Tanneau-Salvadori F, Regnault A, Lopez O, Sansonetti P, Guy B, Kieny MP, Fournel JJ, Montagnier L. Human immunodeficiency virus-specific cytotoxic responses of seropositive individuals: distinct types of effector cells mediate killing of targets expressing gag and env proteins. J Virol 63:2270–7, 1989.

    PubMed  CAS  Google Scholar 

  4. Weinhold KJ, Lyerly HK, Stanley SD, Austin AA, Matthews TJ, Bolognesi DP. 14IV-1 GP120-mediated immune suppression and lymphocyte destruction in the absence of viral infection. J Immunol 142:3091–7, 1989.

    PubMed  CAS  Google Scholar 

  5. Pircher H, Brduscha K, Steinhoff U, Kasai M, Mizuochi T, Zinkernagel RM, Hengartner H, Kyewski B, Muller KP. Tolerance induction by clonal deletion of CD4+8+ thymocytes in vitro does not require dedicated antigen-presenting cells. Eur J Immunol 23:669–74, 1993.

    Article  PubMed  CAS  Google Scholar 

  6. Vollenweider I, Groscurth P. Ultrastructure of cell mediated cytotoxicity. Electr Micr Rev 4:249–67, 1991.

    Article  CAS  Google Scholar 

  7. Smyth MJ, Ortaldo JR. Mechanisms of cytotoxicity used by human peripheral blood CD4+ and CD8+ T cell subsets. The role of granule exocytosis. J Immunol 151:740–7, 1993.

    PubMed  CAS  Google Scholar 

  8. Apasov S, Redegeld F, Sitkovsky M. Cell-mediated cytotoxicity: contact and secreted factors. Current Opinion Immunol 5.404–10, 1993.

    Article  CAS  Google Scholar 

  9. Liu CC, Joag SV, Kwon BS, Young JD. Induction of perforin and serine esterases in a murine cytotoxic T lymphocyte clone. J Immunol 144:1196–201, 1990.

    PubMed  CAS  Google Scholar 

  10. Pasternak MS, Eisen HN. A novel series esterase expressed by cytotoxic T lymphocytes. Nature 314:743–5, 1985.

    Article  Google Scholar 

  11. Shi L, Kam CM, Powers JC, Aebersold R, Greenberg AH. Purification of three cytotoxic lymphocyte granule serine proteases that induce apoptosis through distinct substrate and target cell interactions. J Exp Med 176:1521–9, 1992.

    Article  PubMed  CAS  Google Scholar 

  12. Pastemack MS, Bleier KJ, McInerney TN. Granzyme A binding to target cell proteins. Granzyme A binds to and cleaves nucleolin in vitro. J Biol Chem 266:14703–8, 1991.

    Google Scholar 

  13. Bourinbaiar AS, Phillips DM. Transmission of human immunodeficiency virus from monocytes to epithelia. J Acquir Immune Defic Syndr 4:56–61, 1991.

    Article  PubMed  CAS  Google Scholar 

  14. Phillips DM, Bourinbaiar AS.Mechanism of HIV spread from lymphocytes to epithelial cells. Virology 186:261–73, 1992.

    Article  PubMed  CAS  Google Scholar 

  15. Bourinbaiar AS, Nagorny R. Human immunodeficiency virus type 1 infection of choriocarcinoma-derived trophoblasts. Acta Virol 37:21–8, 1993.

    PubMed  CAS  Google Scholar 

  16. Ueno R, Kuno S. Dextran sulphate, a potent anti-HIV agent in vitro having synergism with zidovudine. Lancet 1:1379, 1987.

    Article  PubMed  CAS  Google Scholar 

  17. Bourinbaiar AS, Nagorny R. Association of anti-HIV-1 effect of dextran sulfate with prevention of lymphocyte-to-trophoblast adhesion. Immunol Infect Dis 2:245–7, 1992.

    CAS  Google Scholar 

  18. Hildreth JE, Orentas RJ. Involvement of a leukocyte adhesion receptor (LFA-1) in HIV-induced syncytium formation. Science 244:1075–8, 1989.

    Article  PubMed  CAS  Google Scholar 

  19. Kalter DC, Gendelman HE, Meltzer MS. Inhibition of human immunodeficiency virus infection in monocytes by monoclonal antibodies against leukocyte adhesion molecules. Immunol Lett 30:219–27, 1991.

    Article  PubMed  CAS  Google Scholar 

  20. Fecondo JV, Pavuk NC, Silbum KA, Read DM, Mansell AS, Boyd AW, McPhee DA. Synthetic peptide analogs of intercellular adhesion molecule 1 (ICAM-1) inhibit HIV-1 replication in MT-2 cells. AIDS Res Human Retrovir 9:733–40, 1993.

    Article  CAS  Google Scholar 

  21. Cohen J. Will media reports KO upcoming real-life trials. Science 264:1660, 1994.

    Article  PubMed  CAS  Google Scholar 

  22. Barr M. HIV therapeutic vaccines: The next stage. Treatment Issues, 7:1–8, 1993.

    Google Scholar 

  23. Prince AM, Horowitz B, Baker L, Shulman RW, Ralph H, Valinsky J, Cundell A, Brotman B, Boehle W, Rey F, et al. Failure of a human immunodeficiency virus (HIV) immune globulin to protect chimpanzees against experimental challenge with HIV. Proc Natl Acad Sci USA 85:6944–8, 1988

    Article  PubMed  CAS  Google Scholar 

  24. Hu SL, Fultz PN, McClure HM, Eichberg JW, Thomas EK, Zarling J, Singhal MC, Kosowski SG, Swenson RB, Anderson DC, et al. Effect of immunization with a vaccinia-HIV env recombinant on HIV infection of chimpanzees. Nature 328:721–3, 1987.

    Article  PubMed  CAS  Google Scholar 

  25. Nara PL, Smit L, Dunlop N, Hatch W, Merges M, Waters D, Kelliher J, Gallo RC, Fischinger PJ, Goudsmit J.Emergence of viruses resistant to neutralization by V3-specific antibodies in experimental human immunodeficiency virus type 1 IIIB infection of chimpanzees. J Virol 64:3779–91, 1990.

    PubMed  CAS  Google Scholar 

  26. Martinez-A C, Marcos MA, de la Hera A, Marquez C, Alonso JM, Toribio ML, Coutinho A. Immunological consequences of HIV infection: advantage of being low responder casts doubts on vaccine development. Lancet 1:454–7, 1988.

    Article  PubMed  CAS  Google Scholar 

  27. Sabin AB. HIV vaccination dilemma. Nature 362:212, 1993.

    Article  PubMed  CAS  Google Scholar 

  28. Veljkovic V, Metlas R. Potentially negative effects of AIDS vaccines based on recombinant viruses carrying HIV-1 derived envelope gene. Awarning on AIDS vaccine development. Vaccine 11:291–2, 1993.

    Article  PubMed  CAS  Google Scholar 

  29. Kliks SC, Shioda T, Haigwood NL, Levy JA. V3 variability can influence the ability of an antibody to neutralize or enhance infection by diverse strains of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 90:11518–22, 1993.

    Article  PubMed  CAS  Google Scholar 

  30. Levy JA. Pathogenesis of human immunodeficiency virus infection. Microbiol Reviews 57:183–289, 1993.

    CAS  Google Scholar 

  31. Sastry KJ, Nehete PN, Venkatnarayanan S, Morkowski J, Platsoucas CD, Arlinghaus RB. Rapid in vivo induction of HIV-specific CD8+ cytotoxic T lymphocytes by a 15-amino acid unmodified free peptide from the immunodominant V3-loop of GP120. Virology 188:502–9, 1992.

    Article  PubMed  CAS  Google Scholar 

  32. Riddell SR, Gilbert MJ, Greenberg PD. CD8+ cytotoxic T cell therapy of cytomegalovirus and HIV infection. Current Opinion Immunol 5:484–91, 1993.

    Article  CAS  Google Scholar 

  33. Bagasra O, Pomerantz RJ. The role of CD8-positive lymphocytes in the control of HIV-1 infection of peripheral blood mononuclear cells. Immunol Lett 5:83–92, 1993.

    Article  Google Scholar 

  34. Koup RA, Sullivan JL, Levine PH, Brettler D, Mahr A, Mazzara G, McKenzie S, Panicali D. Detection of major histocompatibility complex class I-restricted, HIV-specific cytotoxic T lymphocytes in the blood of infected hemophiliacs. Blood 73:1909–14, 1989

    PubMed  CAS  Google Scholar 

  35. Mackewicz CE, Ortega HW, Levy JA. CD8+ cell anti-HIV activity correlates with the clinical state of the infected individual. J Clin Invest 87:1462–6, 1991.

    Article  PubMed  CAS  Google Scholar 

  36. Langlade-Demoyen P, Ngo-Giang-Huong N, Ferchal F, Oksenhendler E. Human immunodeficiency virus (HIV) nef-specific cytotoxic T lymphocytes in noninfected heterosexual contact of HIV-infected patients. J Clin Invest 93:1293–7, 1994

    Article  PubMed  CAS  Google Scholar 

  37. Clerici M, Levin JM, Kessler HA, Harris A, Berzofsky JA, Landay AL, Shearer GM. HIV-specific T-helper activity in seronegative health care workers exposed to contaminated blood. JAMA 271:42–6, 1994.

    Article  PubMed  CAS  Google Scholar 

  38. Martz E. Can CTL control virus infections without cytolysis? The prelytic halt hypothesis. In: Sitkovsky MV, Henkart PA, eds. Cytotoxic cells. Recognition, Effector Function, Generation, and Methods. Birkhauser, Boston, 501–15, 1993.

    Google Scholar 

  39. Tsubota H, Lord CI, Watkins DI, Morimoto C, Letvin NL. A cytotoxic T lymphocyte inhibits acquired immunodeficiency syndrome virus replication in peripheral blood lymphocytes. J Exp Med 169:1421–34, 1989.

    Article  PubMed  CAS  Google Scholar 

  40. Brinchmann JE, Gaudernack G, Vartdal F. CD8+ T cells inhibit HIV replication in naturally infected CD4+ T cells. Evidence for a soluble inhibitor. J Immunol 144:2961–6, 1990.

    PubMed  CAS  Google Scholar 

  41. Wiviott LD. Walker CM. Levy JA. CD8+ lymphocytes suppress HIV production by autologous CD4+ cells without eliminating the infected cells from culture. Cell Immunol 128:628–34, 1990.

    Article  PubMed  CAS  Google Scholar 

  42. Tenner-Racz K, Racz P, Thome C, Meyer CG, Anderson PJ, Schlossman SF, Letvin NL. Cytotoxic effector cell granules recognized by the monoclonal antibody TIA-1 are present in CD8+ lymphocytes in lymph nodes of human immunodeficiency virus-l-infected patients. Am J Pathol 142:1750–8, 1993.

    PubMed  CAS  Google Scholar 

  43. Devergne O, Peuchmaur M, Crevon MC, Trapani JA, Maillot MC, Galanaud P, Emilie D. Activation of cytotoxic cells in hyperplastic lymph nodes from HIV-infected patients. AIDS 5:1071–9, 1991.

    Article  PubMed  CAS  Google Scholar 

  44. Laman JD, Claassen E, Van Rooijen N, Boersma WJ. Immune complexes on follicular dendritic cells as a target for cytolytic cells in AIDS. AIDS 3:543–4, 1989.

    Article  PubMed  CAS  Google Scholar 

  45. Bollinger RC, Quinn TC, Liu AY, Stanhope PE, Hammond SA, Viveen R, Clements ML, Siliciano RF. Cytokines from vaccine-induced HIV-1 specific cytotoxic T lymphocytes: effects on viral replication. AIDS Res Human Retrovir 9:1067–77, 1993.

    Article  CAS  Google Scholar 

  46. Harrer T, Jassoy C, Harrer E, Johnson RP, Walker BD. Induction of HIV-1 replication in a chronically infected T-cell line by cytotoxic T lymphocytes. J Acquir Immune Defic Syndr 6:865–71, 1993.

    PubMed  CAS  Google Scholar 

  47. Kobayashi N, Hamamoto Y, Yamamoto N. Production of tumor necrosis factors by human T cell lines infected with HTLV 1 may cause their high susceptibility to human immunodeficiency virus infection. Med Microbiol Immunol 179:115–22, 1990.

    Article  PubMed  CAS  Google Scholar 

  48. Toth FD, Mosborg-Petersen P, Kiss J, Aboagye-Mathiesen G, Zdravkovic M, Hager H, Ebbesen P. Differential replication of human immunodeficiency virus type 1 in CD8- and CD8+ subsets of natural killer cells: relationship to cytokine production pattern. J Virol 67:5879–88, 1993.

    PubMed  CAS  Google Scholar 

  49. Andersen KB. Cleavage fragments of the retrovirus surface protein gp70 during virus entry. J Gen Virol 68:2193–202, 1987.

    Article  PubMed  CAS  Google Scholar 

  50. McCune JM, Rabin LB, Feinberg MB, Lieberman M, Kosek JC, Reyes GR, Weissman IL. Endoproteolytic cleavage of gp 160 is required for the activation of human immunodeficiency virus. Cell 53:55–67, 1988.

    Article  PubMed  CAS  Google Scholar 

  51. Vuillier F, Bianco NE, Montagnier L, Dighiero G. Selective depletion of low-density CD8+, CD16+ lymphocytes during HIV infection. AIDS Res Human Retrovir 4:121–9, 1988.

    Article  CAS  Google Scholar 

  52. Mansour I, Doinel C, Rouger P. CD16+NK cells decrease in all stages of HIV infection through a selective depletion of the CD16+CD8+CD3- subset. AIDS Res Human Retrovir 6:1451–7, 1990.

    Article  CAS  Google Scholar 

  53. Carmichael A, Jin X, Sissons P, Borysiewicz L. Quantitative analysis of the human immunodeficiency virus type 1 (HIV-1)-specific cytotoxic T lymphocyte (CTL) response at different stages of HIV-1 infection: differential CTL responses to HIV-1 and Epstein-Barr virus in late disease. J Exp Med 77:249–56, 1993.

    Article  Google Scholar 

  54. De Maria A, Pantaleo G, Schnittman SM, Greenhouse JJ, Baseler M, Orenstein JM, Fauci AS.Infection of CD8+ T lymphocytes with HIV. Requirement for interaction with infected CD4+ cells and induction of infectious virus from chronically infected CD8+ cells. J Immunol 146:2220–6, 1991.

    PubMed  Google Scholar 

  55. Mercure L, Phaneuf D, Wainberg MA. Detection of unintegrated human immunodeficiency virus type 1 DNA in persistently infected CD8+ cells. J Gen Virol 74:2077–83, 1993.

    Article  PubMed  CAS  Google Scholar 

  56. Bell SJ, Cooper DA, Kemp BE, Doherty RR, Penny R. CD8+ T-cells from HIV-infected patients can either augment or abrogate HIV-specific lymphoproliferation. Clin Immunol Immunopathol 64:254–60, 1992.

    Article  PubMed  CAS  Google Scholar 

  57. Gruters RA, Terpstra FG, De Jong R, Van Noesel CJ, Van Lier RA, Miedema F. Selective loss of T cell functions in different stages of HIV infection. Early loss of anti-CD3-induced T cell proliferation followed by decreased anti-CD3-induced cytotoxic T lymphocyte generation in AIDS-related complex and AIDS. Eur J Immunol 20:1039–44, 1990.

    Article  PubMed  CAS  Google Scholar 

  58. Sirianni MC, Tagliaferri F, Aiuti F. Pathogenesis of the natural killer cell deficiency in AIDS. Immunol Today 11:81–2, 1990

    Article  PubMed  CAS  Google Scholar 

  59. Henderson LA, Qureshi NM, Rasheed S, Garry R. Human immunodeficiency virus-induced cytotoxicity for CD8 cells from some normal donors and virus-specific induction of a suppressor factor. Clin Inununol Immunopathol 48:174–86, 1988.

    Article  CAS  Google Scholar 

  60. Muller C, Kukel S, Bauer R. Relationship of antibodies against CD4+ T cells in HIV-infected patients to markers of activation and progression: autoantibodies are closely associated with CD4 cell depletion. Immunology 79:248–54, 1993.

    PubMed  CAS  Google Scholar 

  61. Callahan LN, Roderiquez G, Mallinson M, Norcross MA. Analysis of HIV-induced autoantibodies to cryptic epitopes on human CD4. J Immunol 149:2194–202, 1992.

    PubMed  CAS  Google Scholar 

  62. Debure A, Chkoff N, Chatenoud L, Lacombe M, Campos H, Noel LH, Goldstein G, Bach JF, Kreis H. One-month prophylactic use of OKT3 in cadaver kidney transplant recipients. Transplantation 45:546–53, 1988.

    Article  PubMed  CAS  Google Scholar 

  63. Wee SL, Stroka DM, Preffer FI, Jolliffe LK, Colvin RB, Cosimi AB. The effects of OKT4A monoclonal antibody on cellular immunity of nonhuman primate renal allograft recipients. Transplantation 53:501–7, 1992.

    Article  PubMed  CAS  Google Scholar 

  64. Aksentijevich I, Sachs DH, Sykes M. Humoral tolerance in xenogeneic BMT recipients conditioned by a nonmyeloablative regimen. Transplantation. 53:1108–14, 1992.

    Article  PubMed  CAS  Google Scholar 

  65. Chatenoud L, Thervet E, Primo J, Bach JF. Anti-CD3 antibody induces long-term remission of overt autoimmunity in nonobese diabetic mice. Proc Natl Acad Sci USA 91:123–7, 1994.

    Article  PubMed  CAS  Google Scholar 

  66. Sharpe RJ, Schweizer RT. The LAV/HTLV III virus may evade elimination by the immune system by inducing low zone tolerance to itself. Med Hypoth 20:421–7, 1986.

    Article  CAS  Google Scholar 

  67. Ascher MS, Sheppard HW. AIDS as immune system activation. II. The panergic imnesia hypothesis. J Acquir Immune Defic Syndr 3:177–91, 1990.

    PubMed  CAS  Google Scholar 

  68. Marker O, Thomsen AR. T-cell effector function and unresponsiveness in the murine lymphocytic choriomeningitis virus infection. I. On the mechanism of a selective suppression of the virus-specific delayed-type hypersensitivity response. Scand J Immunol 24:127–35, 1986

    Article  PubMed  CAS  Google Scholar 

  69. Moskophidis D, Lechner F, Pircher H, Zinkemagel RM. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature 362:758–61, 1993.

    Article  PubMed  CAS  Google Scholar 

  70. Bogner JR, Matuschke A, Heinrich B, Schreiber MA, Nerl C, Goebel FD. Expansion of activated T lymphocytes (CD3 + HLA/DR +) detectable in early stages of HIV-1 infection. Klin Wochenschrift 68:393–6, 1990.

    Article  CAS  Google Scholar 

  71. Groux H, Torpier G, Monte D, Mouton Y, Capron A, Ameisen JC. Activation-induced death by apoptosis in CD4+ T cells from human immunodeficiency virus-infected asymptomatic individuals. J Exp Med 175:331–40, 1992.

    Article  PubMed  CAS  Google Scholar 

  72. Ferrari G, Ottinger J, Place C, Nigida SM Jr, Arthur LO, Weinhold KJ. The impact of HIV-1 infection on phenotypic and functional parameters of cellular immunity in chimpanzees. AIDS Res Human Retrovir 9:647–56, 1993.

    Article  CAS  Google Scholar 

  73. Van Eendenburg JP, Yagello M, Girard M, Kieny MP, Lecocq JP, Muchmore E, Fultz PN, Riviere Y, Montagnier L, Gluckman JC. Cell-mediated immune proliferative responses to HIV-1 of chimpanzees vaccinated with different vaccinia recombinant viruses. AIDS Res Human Retrovir 5:41–50, 1989.

    Article  Google Scholar 

  74. Zarling JM, Ledbetter JA, Sias J, Fultz P, Eichberg J, Gjerset G, Moran PA. HIV-infected humans, but not chimpanzees, have circulating cytotoxic T lymphocytes that lyse uninfected CD4+ cells. J Immunol 144:2992–8, 1990.

    PubMed  CAS  Google Scholar 

  75. Schuitemaker H, Meyaard L, Kootstra NA, Dubbes R, Otto SA, Tersmette M, Heeney JL, Miedema F. Lack of T cell dysfunction and programmed cell death in human immunodeficiency virus type 1-infected chimpanzees correlates with absence of monocytotropic variants. J Infect Dis 168:1140–7,1993.

    Article  PubMed  CAS  Google Scholar 

  76. Saxinger C, Alter HJ, Eichberg JW, Fauci AS, Robey WG, Gallo RC. Stages in the progression of HIV infection in chimpanzees. AIDS Res Human Retrovir 3:375–85, 1987.

    Article  CAS  Google Scholar 

  77. Gibbs CJ Jr, Peters R, Gravell M, Johnson BK, Jensen FC, Carlo DJ, Salk J. Observations after human immunodeficiency virus immunization and challenge of human immunodeficiency virus seropositive and seronegative chimpanzees. Proc Natl Acad Sci USA 88:3348–52, 1991.

    Article  PubMed  Google Scholar 

  78. Castro BA, Homsy J, Lennette E, Murthy KK, Eichberg JW, Levy JA. HIV expression in chimpanzees can be activated by CD8+ cell depletion or CMV infection. Clin Immunol Immunopathol 65:227–33, 1992.

    Article  PubMed  CAS  Google Scholar 

  79. Husch B, Eibl MM, Mannhalter JW. CD3, CD8 double-positive cells from HIV-1-infected chimpanzees show group-specific inhibition of HIV-1 replication. AIDS Res Human Retrovir 9:405–13, 1993.

    Article  CAS  Google Scholar 

  80. Andrieu JM, Even P, Venet A, Tourani JM, Stern M, Lowenstein W, Androin C, Erne D, Masson D, Sors H, Israel-Biet D, Beldjord K. Effects of cyclosporin on T-cell subsets in human immunodeficiency virus disease. Clin. Immunol. Immunopathol. 47:181–98, 1988.

    Article  CAS  Google Scholar 

  81. Klatzmann D, Laporte JP, Achour A, Brisson E, Gruest J, Montagnier L, Gluckman JC. Cyclosporine A treatment for human immunodeficiency virus-infected transplant recepients. Transplant Proc 19:1828, 1987.

    PubMed  CAS  Google Scholar 

  82. Wainberg MA, Dascal A, Blain N, Fitz-Gibbon L, Boulerice F, Numazaki K, Tremblay M. The effect of cyclosporine A on infection of susceptible cells by human immunodeficiency virus type 1. Blood 72:1904–10, 1988.

    PubMed  CAS  Google Scholar 

  83. Sawada M, Suzumura A, Marunouchi T, Down regulation of CD4 expression in cultured microglia by immunosuppressants and lipopolysaccharide. Biochem Biophys Res Comm 189:869–76, 1992.

    Article  PubMed  CAS  Google Scholar 

  84. Ameisen JC, Capron A. Cell dysfunction and depletion in AIDS: the programmed cell death hypothesis. Immunol Today 12:102–5, 1991.

    Article  PubMed  CAS  Google Scholar 

  85. Amendola A, Lombardi G, Oliverio S, Colizzi V, Piacentini M. HIV-1 gp120-dependent induction of apoptosis in antigen-specific human T cell clones is characterized by ‘tissue’ transglutaminase expressionand prevented by cyclosporin A. FEBS Lett 339:258–64, 1994.

    Article  PubMed  CAS  Google Scholar 

  86. Karpas A, Lowdell M, Jacobson SK, Hill F. Inhibition of human immunodeficiency virus and growth of infected T cells by the immunosuppressive drugs cyclosporin A and FK 506. Proc Natl Acad Sci USA 89:8351–5, 1992.

    Article  PubMed  CAS  Google Scholar 

  87. Bell KD, Ramilo O, Vitetta ES. Combined use of an immunotoxin and cyclosporine to prevent both activated and quiescent peripheral blood T cells from producing type 1 human immunodeficiency virus. Proc Natl Acad Sci USA 90:1411–5, 1993.

    Article  PubMed  CAS  Google Scholar 

  88. Luban J, Bossolt KL, Franke EK, Kalpana GV, Goff SP. Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell 73:1067–78, 1993.

    Article  PubMed  CAS  Google Scholar 

  89. Polacino PS, Liang HA, Firpo EJ, Clark EA. T-cell activation influences initial DNA synthesis of simian immunodeficiency virus in resting T lymphocytes from macaques. J Virol 67:7008–16, 1993.

    PubMed  CAS  Google Scholar 

  90. Tindall B, Carr A, Goldstein D, Penny R, Cooper DA. Administration of zidovudine during primary HIV-1 infection may be associated with a less vigorous immune response. AIDS 7:127–8, 1993.

    Article  PubMed  CAS  Google Scholar 

  91. Stine KC, Tyler DS, Stanley SD, Bartlett JA, Bolognesi DP, Weinhold KJ. The effect of AZT on in vitro lymphokine-activated killer (LAK) activity in human immunodeficiency virus type-1 (HIV-1) infected individuals. Cell Immunol 136:165–72, 1991

    Article  PubMed  CAS  Google Scholar 

  92. Ascher MS, Sheppard HW. The panergic imnesia hypothesis. Part I: Update of current findings. In: Montagnier L, Gougeon M-L, eds. New concepts in AIDS pathogenesis. Marcel Dekker, New York, 291–9,1993.

    Google Scholar 

  93. Dadaglio G, Michel F, Langlade-Demoyen P, Sansonetti P, Chevrier D, Vuillier F, Plata F, Hoffenbach A. Enhancement of HIV-specific cytotoxic T lymphocyte responses by zidovudine (AZT) treatment. Clin Exp Immunol 87:7–14, 1992.

    Article  PubMed  CAS  Google Scholar 

  94. Brack C, Mattaj IW, Gautschi J, Cammisuli S. Cyclosporin A is a differential inhibitor of eukaryotic RNA polymerases. Exp Cell Res 151:314–21, 1984.

    Article  PubMed  CAS  Google Scholar 

  95. Mahajan PB, Thompson, EA, Jr. Cyclosporin A inhibits rDNA transcription in lymphosarcoma P1798 cells. J Biol Chem 262:16150–6, 1987.

    PubMed  CAS  Google Scholar 

  96. Copeland WC, Chen MS, Wang TS. Human DNA polymerase alpha and beta are able to incorporate anti-HIV deoxynucleotides into DNA. J Biol Chem 267:21495–4,1992.

    Google Scholar 

  97. Lacey SF, Reardon JR, Furfme JE, Kunkel ES, Bebenek K, Eckert KA, Kemp SD, Larder BA. Biochemical studies on the reverse transcriptase and RNase H activities from human immunodeficiency virus strains resistant to 3’-azido-3’- deoxythymidine. J Biol Chem 267:15789–94, 1992.

    PubMed  CAS  Google Scholar 

  98. Yasutomi D, Odaka C, Saito S, Niizeki H, Kizaki H, Tadakuma T. Inhibition of programmed cell death by cyclosporin A; preferential blocking of cell death induced by signals via TCR/CD3 complex and its mode of action. Immunology 77:68–74, 1992.

    PubMed  CAS  Google Scholar 

  99. Andrieu JM, Even P, Tourani JM, Beldjord K, Audroin C. Result of a 2-year exploratory study with cyclosporin A in human immunodeficiency virus infection. In: Andrieu JM, Bach JF, Even P, eds. Autoimmune aspects of HIV infection. London: Royal.Society of Medicine Services Ltd. 191–4, 1988.

    Google Scholar 

  100. Cerny A, Merino R, Fossati L, de Cossodo S, Heusser C, Waldvogel FA, Morse III HC, Izui S. Effect of cyclosporin A and zidovudine on immune abnormalities observed in the murine acquired immunodeficiency syndrome. J Infect Dis 166:285–90, 1992.

    Article  PubMed  CAS  Google Scholar 

  101. Kotler DP, Weaver SC, Terzakis JA. Ultrastructural features of epithelial cell degeneration in rectal crypts of patients with AIDS. Am J Surg Pathol 10:531–8, 1986.

    Article  PubMed  CAS  Google Scholar 

  102. Gougeon ML, Laurent-Crawford AG, Hovanessian AG, Montagnier L. Direct and indirect mechanisms mediating apoptosis during HIV infection: contribution to in vivo CD4 T cell depletion. Sem Immunol 5:187–94, 1993.

    Article  CAS  Google Scholar 

  103. Oyaizu N, McCloskey TW, Coronesi M, Chirmule N, Kalyanaraman VS, Pahwa S. Accelerated apoptosis in peripheral blood mononuclear cells (PBMCs) from human immunodeficiency virus type-1 infected patients and in CD4 cross-linked PBMCs from normal individuals. Blood 82:3392–400, 1993.

    PubMed  CAS  Google Scholar 

  104. Gougeon ML, Garcia S, Heeney J, Tschopp R, Lecoeur H, Guetard D, Rame V, Dauguet C, Montagnier L. Programmed cell death in AIDS-related HIV and SIV infections. AIDS Res Human Retrovir 9:553–63, 1993

    Article  CAS  Google Scholar 

  105. Gougeon ML, Colizzi V, Dalgleish A, Montagnier L. New concepts in AIDS pathogenesis. AIDS Res Human Retrovir 9:287–9, 1993.

    Article  CAS  Google Scholar 

  106. Cohen DA, Fitzpatrick EA, Barve SS, Guthridge JM, Jacob RJ, Simmerman L, Kaplan AM. Activation-dependent apoptosis in CD4+ T cells during murine AIDS. Cell Immunol 151:392–403, 1993.

    Article  PubMed  CAS  Google Scholar 

  107. Meyaard L, Otto SA, Keet IP, Roos MT, Miedema F. Programmed death of T cells in human immunodeficiency virus infection. No correlation with progression to disease. J Clin Invest 93:982–8, 1994.

    Article  PubMed  CAS  Google Scholar 

  108. Meyaard L, Otto SA, Jonker RR, Mijnster MJ, Keet RP, Miedema F. Programmed death of T cells in HIV-1 infection. Science 257:217–9, 1992.

    Article  PubMed  CAS  Google Scholar 

  109. Mahalingam M, Peakman M, Davies ET, Pozniak A, McManus TJ, Vergani D. T cell activation and disease severity in HIV infection. Clin Exp Immunol 93:337–43, 1993.

    Article  PubMed  CAS  Google Scholar 

  110. Kimura M. Evolutionary rate at the molecular level. Nature 217:624–6, 1968.

    Article  PubMed  CAS  Google Scholar 

  111. Zychlinsky A, Zheng LM, Liu CC, Young JD. Cytolytic lymphocytes induce both apoptosis and necrosis in target cells. J Immunol 146:393–400, 1991.

    PubMed  CAS  Google Scholar 

  112. Chen RH, Ivens KW, Alpert S, Billingham ME, Fathman CG, Flavin TF, Shizuru JA, Starnes VA, Weissman IL, Griffiths GM. The use of granzyme A as a marker of heart transplant rejection in cyclosporine or anti-CD4 monoclonal antibody-treated rats. Transplantation 55:146–53, 1993.

    Article  PubMed  CAS  Google Scholar 

  113. Forrest MJ, Jewell ME, Koo GC, Sigal NH. FK-506 and cyclosporin A: selective inhibition of calcium ionophore-induced polymorphonuclear leukocyte degranulation. Biochem Pharmacol 42:1221–8, 1991.

    Article  PubMed  CAS  Google Scholar 

  114. Hudig D, Powers JC. Use of protease inhibitors as probes for biological functions: Conditions, controls, and caveats. In: Sitkovsky MV, Henkart PA, eds. Cytotoxic cells. Recognition, Effector Function, Generation, and Methods. Birkhauser, Boston, 501–15, 1993.

    Google Scholar 

  115. Kido H, Fukutomi A, Katunuma N. Tryptase TL2 in the membrane of human T4+ lymphocytes is a novel binding protein of the V3 domain of HIV-1 envelope glycoprotein gp 120. FEBS Lett 286:233–6, 1991.

    Article  PubMed  CAS  Google Scholar 

  116. Hallenberger S, Bosch V, Angliker H, Shaw E, Klenk H-D, Garten W. Inhibition of cleavage activation of HIV-1 glycoprotein gp160. Nature 360:358–361, 1992.

    Article  PubMed  CAS  Google Scholar 

  117. Callebaut C, Krust B, Jacotot E, Hovanessian AG. T cell activation antigen, CD26, as a cofactor for entry of HIV in CD4+ cells. Science 262:2045–50, 1993.

    Article  PubMed  CAS  Google Scholar 

  118. Johnson ME, Lin Z, Padmanabhan K, Tulinsky A, Kahn M. Conformational rearrangements required of the V3 loop of HIV-1 gp120 for proteolytic cleavage and infection. FEBS Lett 337:4–8, 1994.

    Article  PubMed  CAS  Google Scholar 

  119. Bourinbaiar AS, Lee-Huang S, Krasinski K, Borkowsky W. Inhibitory effect of the oral immune response modifier, bestatin, on cell-mediated and cell-free HIV infection in vitro. Biomed Pharmacother 48:55–61, 1994.

    Article  PubMed  CAS  Google Scholar 

  120. Bourinbaiar AS, Nagorny R. Effect of serine protease inhibitor, N-a-tosyl-L-lysyl-chloromethylketone (TLCK), on cell-mediated and cell-free HIV-1 spread. Cell Immunol 155:230–6, 1994.

    Article  PubMed  CAS  Google Scholar 

  121. Werner A, Levy JA. Human immunodeficiency virus type 1 envelope gp 120 is cleaved after incubation with recombinant soluble CD4. J Virol 67:2566–74, 1993.

    PubMed  CAS  Google Scholar 

  122. Chang WT, Eisen H. Effects of N-a-tosyl-L-lysyl-chloromethyl-ketone on the activity of cytotoxic T lymphocytes. J Immunol 124:1028–32, 1980.

    PubMed  CAS  Google Scholar 

  123. Pasternack MS, Sitkovsky MV, Eisen HN. The site of action of N-a-tosyl-L-lysyl-chloromethyl-ketone (TLCK) on cloned cytotoxic T lymphocytes. J Immunol 131:2477–83, 1983.

    PubMed  CAS  Google Scholar 

  124. Redegeld FA, Chatterjee S, Berger NA, Sitkovsky MV. Poly-(ADP-ribose) polymerase partially contributes to target cell death triggered by cytolytic T lymphocytes. J Immunol 149:3509–16, 1992.

    PubMed  CAS  Google Scholar 

  125. Kashman Y, Gustafson KR, Fuller RW, Cardellina JH 2d, McMahon JB, Curren MJ, Buckheit RW Jr, Hughes SH, Cragg GM, Boyd MR. The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum J Med Chem 35:2735–43, 1992.

    CAS  Google Scholar 

  126. Bourinbaiar AS, Tan X, Nagorny R. Effect of the oral anticoagulant, warfarin, on HIV-1 replication and spread. AIDS 7:129–30, 1993.

    Article  PubMed  CAS  Google Scholar 

  127. Bourinbaiar AS, Tan X, Nagorny R. Inhibitory effect of coumarin on HIV replication and cell-mediated or cell-free viral infection. Acta Virol 37:241–50, 1993.

    PubMed  CAS  Google Scholar 

  128. Jozefonvicz J, Jozefowicz M. Interactions of biospecific functional polymers with blood proteins and cells. J Biomater Sci Polymer Ed 1:147–65, 1990.

    Article  CAS  Google Scholar 

  129. Cushman M, Wang PL, Chang SH, Wild C, De Clercq E, Schols D, Goldman ME, Bowen JA. Preparation and anti-HIV activities of aurintricarboxylic acid fractions and analogues: direct correlation of antiviral potency with molecular weight. J Med Chem 34:329–37, 1991.

    Article  PubMed  CAS  Google Scholar 

  130. Helgason CD, Shi L, Greenberg AH, Shi Y, Bromley P, Cotter TG, Green DR, Bleackley RC. DNA fragmentation induced by cytotoxic T lymphocytes can result in target cell death. Exp Cell Res 206:30210, 1993.

    Article  Google Scholar 

  131. Bruley-Rosset M, Payelle B, Rappaport H. Acceleration of age-associated immune decline and mortality by early repeated administration of bestatin to C57BL/6 mice. J Biol Response Mod 5:176–90, 1986.

    PubMed  CAS  Google Scholar 

  132. Gerschenson LE, Rotello RJ. Apoptosis and cell proliferation are terms of the growth equation. In: Tomei LD, Cope FO, eds. Apoptosis: The Molecular Basis of Cell Death. Cold Spring harbor Laboratory Press, Cold Spring Harbor, NY, 175–92, 1991.

    Google Scholar 

  133. Bourinbaiar AS, Nagorny R, Tan X. Pregnancy hormones, estrogen and progesterone, prevent HIV-1 synthesis in monocytes but not in lymphocytes. FEBS Lett 302:206–8, 1992.

    Article  PubMed  CAS  Google Scholar 

  134. Pierce JG. Eli Lilly lecture: The subunits of pituitary thyrotropin - their relationships to other glycoprotein hormones. Endocrinol. 89:1331, 1971.

    Article  CAS  Google Scholar 

  135. Affronti LF, DeBlaker DF. Immunological detection of hCG-like substances in aerobic bacteria of both tumour and non-tumour origin. Microbios 48:173, 1986.

    PubMed  CAS  Google Scholar 

  136. Maghnie M, Valtorta A, Moretta A, Priora C, Preti P. Effetto della terapia con gonadotropina corionica (hCG) sul sistema immunitario. Medicina 10:148–9, 1990.

    PubMed  CAS  Google Scholar 

  137. Tapanainen JS, Tilly JL, Vihko KK, Hsueh AJ. Hormonal control of apoptotic cell death in the testis: gonadotropin and androgen as testicular cell survival factors. Mol Endocrinol 7:643–50, 1993

    Article  PubMed  CAS  Google Scholar 

  138. Harbour-McMenamin D, Smith EM, Blalock JE. Production of immunoreactive chorionic gonadotropin during mixed lymphocyte reactions: a possible selective mechanism for genetic diversity. Proc Natl Acad Sci USA 83:6834–38, 1986.

    Article  PubMed  CAS  Google Scholar 

  139. Milwidsky A, Finci-Yeheskel Z, Yagel S, Mayer M. Gonadotropin-mediated inhibition of proteolytic enzymes produced by human trophoblast in culture. J Clin Endocrinol Metabol 76:1101–5, 1993.

    Article  CAS  Google Scholar 

  140. Bourinbaiar AS, Nagorny R. Effect of human chorionic gonadotropin (hCG) on reverse transcriptase activity in HIV-1 infected lymphocytes and monocytes. FEMS Microbiol Lett 96:27–30, 1992.

    Article  CAS  Google Scholar 

  141. Bourinbaiar AS, Nagorny R. Inhibitory effect of human chorionic gonadotropin (hCG) on HIV-1 transmission from lymphocytes to trophoblasts. FEBS Lett 309:82–4, 1992

    Article  PubMed  CAS  Google Scholar 

  142. Bourinbaiar AS, Lee-Huang S. Anti-HIV effect of beta subunit of human chorionic gonadotropin (βhCG) in vitro. Immunology Lett 44:13–18, 1995.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bourinbaiar, A.S., Lee-Huang, S. (1995). Rational Problems Associated with the Development of Cellular Approaches in Controlling HIV Spread. In: Andrieu, JM., Lu, W. (eds) Cell Activation and Apoptosis in HIV Infection. Advances in Experimental Medicine and Biology, vol 374. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1995-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1995-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5823-7

  • Online ISBN: 978-1-4615-1995-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics