Aids as Immune System Activation

Key questions that remain
  • Michael S. Ascher
  • Haynes W. Sheppard
  • John F. Krowka
  • Hans J. Bremermann
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 374)


Since 1987, when we first formulated the hypothesis that AIDS and HIV disease are the result of inappropriate immune system activation triggered by viral gp 120 signalling at CD4 [1-3], the concept has been supported by several developments. First is a better understanding of the natural history of HIV disease. Second is the elucidation of the role of CD4 in T cell activation. Third is the appreciation of the prominent role of programmed cell death or apoptosis in the normal dynamic equilibrium of the immune system. Last is the failure of antiviral strategies to affect the clinical course of disease in infected individuals.


Human Immunodeficiency Virus Programme Cell Death Human Immunodeficiency Virus Disease Immunol Today Immune System Activation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ascher MS, Sheppard HW. AIDS as immune system activation: a model for pathogenesis. Clin Exp Immunol 1988;73:165–167.Google Scholar
  2. 2.
    Ascher MS, Sheppard HW. AIDS as immune system activation II: the panergic imnesia hypothesis. JAIDS 1990;3:177–191.Google Scholar
  3. 3.
    Sheppard HW, Ascher MS. The natural history and pathogenesis of HIV infection. Ann Rev Micro 1992;46:533–564.CrossRefGoogle Scholar
  4. 4.
    Godfried MH, van der Poll T, Weverling GJ, Mulder JW, Jansen J, van Deventer SJH, Sauerwein HP. Soluble receptors for tumor necrosis factor as predictors of progression to AIDS in asymptomatic human immunodeficiency virus type 1 infection. J Inf Dis 1994;169:739–745.CrossRefGoogle Scholar
  5. 5.
    Plaeger-Marshall S, Isacescu V, O’Rourke S, Bertoli J, Bryson YJ, Stiehm ER. T cell activation in pediatric AIDS pathogenesis: three-color immunophenotyping. Clin Immunol Immunopathol 1994;71:19–26.PubMedCrossRefGoogle Scholar
  6. 6.
    Dondorp AM, Veenstra J, van der Poll T, Mulder JW, Reiss P. Activation of the cytokine network in a patient with AIDS and the recalcitrant erythematous desquamating disorder. Clin Inf Dis 1994;18:942–945.CrossRefGoogle Scholar
  7. 7.
    Kestens L, Vanham G, Vereecken C, Vandenbruaene M, Vercauteren G, Colebunders RL, Gigase PL. Selective increase of activation antigens HLA-DR and CD38 on CD4+CD45RO+ T lymphocytes during HIV-1 infection. Clin Exp Immunol 1994;95:436–441.CrossRefGoogle Scholar
  8. 8.
    Aukrust P, Liabakk NB, Muller F, Lien E, Espevik T, FrolandSS. Serum levels of tumor necrosis factor-alpha(TNF-alpha) and soluble TNF receptors in human immunodeficiency virus type 1 infection-correlations to clinical, immunologic, and virologie parameters. J Inf Dis 1994;169:420–424.CrossRefGoogle Scholar
  9. 9.
    Sonnabend J, Witkin SS, Purtillo DT. Acquired immunodeficiency syndrome, opportunistic infections, and malignancies in male homosexuals. JAMA 1983;249:2370–2374.PubMedCrossRefGoogle Scholar
  10. 10.
    Montagnier L, Blanchard A. Mycoplasma as cofactors in infection due to the human immunodeficiency virus. Clin Inf Dis 1993;17(Suppl 1):S309–S315.Google Scholar
  11. 11.
    Lo SC, Hayes MM, Wang RYH, Pierce PF, Kotani H, Shih JWK. Newly discovered mycoplasma isolated from patients infected with HIV. Lancet 1991;338:1415–1418.PubMedCrossRefGoogle Scholar
  12. 12.
    Katseni VL, Gilroy CB, Ryait BIC, Ariyoshi K, Bieniasz PD, Weber JN, Taylor-Robinson D. Mycoplasma fermentans in individuals seropositive and seronegative for HIV-1. Lancet 1993;341:271–273.PubMedCrossRefGoogle Scholar
  13. 13.
    Andrieu JM, Even P, Vener A. AIDS and related syndromes as a viral-induced autoimmune disease of the immune system: an anti-MEC II disorder. AIDS Res 1986;2:163–174.PubMedCrossRefGoogle Scholar
  14. 14.
    Even P, Venet A, Israel-Biet D, Tourani JM, Lowenstein W, Andrieu JM. Autoimmunity and immunopathy in viral diseases: an overview. In Autoimmune Aspects of HIV Infection, ed. J-M. Andrieu, J-F. Bach and P. Even, 1988, pp. 7–22. Pub. by Royal Soc. Med. Serv. Ltd.Google Scholar
  15. 15.
    Even P, Andrieu JM, Venet A, Beldjord K, Tourani JM, Israel-Biet D. The human immune deficiency virus disease (HIVD) as a virus-induced immunopathic and autoimmune disorder. In Autoimmune Aspects of HIV Infection, ed. J-M. Andrieu, J-F. Bach and P. Even, 1988, pp. 79–107. Pub. by Royal Soc. Med. Serv. Ltd.Google Scholar
  16. 16.
    Ziegler JL, Stites DP. Hypothesis: AIDS is an autoimmune disease directed at the immune system and triggered by a lymphotropic virus. Clin Immunol Immunopathol 1986;41:305–313.CrossRefGoogle Scholar
  17. 17.
    Hoffmann GW, Kion TA, Grant MD. An idiotypic network model of AIDS immunopathogenesis. Proc Natl Acad Sci USA 1991;88:3060–3064.PubMedCrossRefGoogle Scholar
  18. 18.
    Habeshaw JA. HLA mimicry by HIV-1 gp 120 in the pathogenesis of AIDS. Immunol Today 1994;15:3940.CrossRefGoogle Scholar
  19. 19.
    Janeway C. Mls: makes a little sense. Nature 1991;349:459–461.PubMedCrossRefGoogle Scholar
  20. 20.
    Ameglio F, Capobianchi MR, Castilletti C, Fei PC, Fais S, Trento E, Dianzani F. Recombinant gp120 induces IL-10 in resting peripheral blood mononuclear cells; correlation with the induction of other cytokines. Clin Exp Immunol 1994;95:455–458.PubMedCrossRefGoogle Scholar
  21. 21.
    Janeway CA. The co-receptor function of CD4. Sem in Immunol 1991;3:153–160.PubMedGoogle Scholar
  22. 22.
    Janeway CA. The T cell receptor as a multicomponent signalling machine: CD4/CD8 coreceptors and CD45 in T cell activation. Ann Rev Imm 1992;10:645–674.CrossRefGoogle Scholar
  23. 23.
    Neudorf SML, Jones MM, McCarthy BM, Harmony JAK, Choi EM. The CD4 molecule transmits biochemical information important in the regulation of T lymphocyte activity. Cell Immunol 1990;125:301–314.PubMedCrossRefGoogle Scholar
  24. 24.
    Kaufmann R, Laroche D, Buchner K, et al. The HIV-1 surface protein gp 120 has no effect on transmembrane signal transduction in T cells. JAIDS 1992;5:760–770.Google Scholar
  25. 25.
    Wang ZQ, Orlikowsky T, Dudhane A, et al. Deletion of T lymphocytes in human CD4 transgenic mice induced by HIV-gp 120 and gp 120-specific antibodies from AIDS patients. Eur J Immunol 1994;24:1553–1557.PubMedCrossRefGoogle Scholar
  26. 26.
    Francis DP, Jaffe HW, Fultz PN, Getchell JP, McDougal JS, Feorino PM. The natural history of infection with the lymphadenopathy-associated virus human T-lymphotropic virus type III. Ann Intern Med 1985;103:719–722.PubMedGoogle Scholar
  27. 27.
    Fauci AS, Masur H, Gelmann EP, Markham PD, Hahn BH, Lane HC. The acquired immunodeficiency syndrome: an update. Ann Intern Med 1985;102:800–803.PubMedGoogle Scholar
  28. 28.
    Fauci AS. The human immunodeficiency virus: Infectivity and mechanisms of pathogenesis. Science 1988;239:617–622.PubMedCrossRefGoogle Scholar
  29. 29.
    Fauci AS, Schnittman SM, Poli G, Koenig S, Pantaleo G Immunopathogenic mechanisms in human immunodeficiency virus (HIV) infection. Ann Intern Med 1991;114:678–693.PubMedGoogle Scholar
  30. 30.
    Fauci AS. Immunopathogenesis of HIV infection. JAIDS 1993;6:655–662.Google Scholar
  31. 31.
    Fauci AS. Multifactorial nature of human immunodeficiency virus disease: implications for therapy. Science 1993;262:1011–1018.PubMedCrossRefGoogle Scholar
  32. 32.
    Nowak MA, Anderson RM, McLean AR, Wolfs TFW, Goudsmit J, May RM. Antigenic diversity thresholds and the development of AIDS. Science 1991;254:963–969.PubMedCrossRefGoogle Scholar
  33. 33.
    Piatak M, Saag MS, Yang LC, Clark SJ, et al. High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science 1993;259:1749–1754.PubMedCrossRefGoogle Scholar
  34. 34.
    Maddox J. Where the AIDS virus hides away. Nature 1993;362:287.PubMedCrossRefGoogle Scholar
  35. 35.
    Pantaleo G, Graziosi C, Demarest JF, et al. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature 1993;362:355–358.PubMedCrossRefGoogle Scholar
  36. 36.
    Embretson J, Zupancic M, Ribas JL, Burke A, Racz P, Tenner-Racz K, Haase AT. Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS. Nature 1993;362:359–362.PubMedCrossRefGoogle Scholar
  37. 37.
    Rosenberg YJ, Zack PM, Leon EC, et al Immunological and virological changes associated with decline in CD4/CD8 ratios in lymphoid organs of SIV-infected macaques. AIDS Res Hum Retrovir 1994;10:863-PubMedCrossRefGoogle Scholar
  38. 38.
    Chevret S, Kirstetter M, Mariotti M, Lefrere MF, Frottier J, Lefrere JJ. Provirus copy number to predict disease progression in asymptomatic human immunodeficiency virus type 1 infection. J Inf Dis 1994;169:882–885.CrossRefGoogle Scholar
  39. 39.
    Schnittman SM, Greenhouse JJ, Psallidopoulos MC, et al. Increasing viral burden in CD4+ T cells from patients with human immunodeficiency virus (HIV) infection reflects rapidly progressive immunosuppression and clinical disease. Ann Intern Med 1990;113:438–443.PubMedGoogle Scholar
  40. 40.
    Lu W, Shih WK, Tourani JM, Eme D, Alter HJ, Andrieu JM. Lack of isolate-specific neutralizing activity is correlated with an increased viral burden in rapidly progressing HIV-1-infected patients. AIDS 1993;(suppl 2):S91–S99.CrossRefGoogle Scholar
  41. 41.
    Nuovo GJ, Becker J, Burk MW, Margiotta M, Fuhrer J, Steigbigel RT. In situ detection of PCR-amplified HIV-1 nucleic acids in lymph nodes and peripheral blood in patients with asymptomatic HIV-1 infection and advanced stage AIDS. JAIDS 1994;7:916–923.Google Scholar
  42. 42.
    Lee TH, Sheppard HW, Reis M, Dondero D, Osmond D, Busch MP. Circulating HIV 1-infected cell burden from seroconversion to AIDS: importance of postseroconversion viral load on disease course. JAIDS 1994;7:381–388.Google Scholar
  43. 43.
    Ascher MS, Sheppard HW, Amon JM, Lang W. Viral burden in HIV disease. JAIDS 1991;4:824–830.Google Scholar
  44. 44.
    Sheppard HW, Ascher MS, Krowka JF., Viral burden and HIV disease. Nature 1993;364:291.PubMedCrossRefGoogle Scholar
  45. 45.
    Sheppard HW, Ascher MS, McRae B, Anderson RE, Lang W, Allain JP. The initial immune response to HIV and immune system activation determine the outcome of HIV disease. JAIDS 1991;4:704–712.Google Scholar
  46. 46.
    Simmonds P, Lainson FA, Cuthbert R, Steel CM, Peutherer JF, Ludlam CA. HIV antigen and antibody detection: variable responses to infection in the Edinburgh haemophiliac cohort. Br Med J 1988;296:593–598.CrossRefGoogle Scholar
  47. 47.
    Langhoff E, McElrath J, Bos HJ, Pruett J, Granelli-Piperno A, Cohn ZA, Steinman RM. Most CD4+ T cells from human immunodeficiency virus-1 infected patients can undergo prolonged clonal expansion. J Clin Invest 1989;84:1637–1643.PubMedCrossRefGoogle Scholar
  48. 48.
    Gougeon ML, Olivier R, Garcia S, Guetard D, Dragie T, Dauguet C, Montagnier L. Evidence for an engagement process towards apoptosis in lymphocytes of HIV-infected patients. Comptes Rendu 1991;312:529–537.Google Scholar
  49. 49.
    Laurence J, Hodtsev AS, Posnett DN. Superantigen implicated in dependence ofHIV-1 replication in T cells on TCR V-beta expression. Nature 1992;358:255–259.PubMedCrossRefGoogle Scholar
  50. 50.
    Mosier DE, Gulizia RJ, MacIsaac PD, Torbett BE, Levy JA. Rapid loss of CD4+ T cells in human-PBLSCID mice by noncytopathic HIV isolates. Science 1993;260:689–692.PubMedCrossRefGoogle Scholar
  51. 51.
    Michie CA, McLean A. Lymphocyte lifespan, immunological memory and retroviral infections. Immunol Today 1993;14:235.PubMedCrossRefGoogle Scholar
  52. 52.
    Michie CA, McLean A, Alcock C, Beverley PCL. Lifespan of human lymphocyte subsets defined by CD45 isoforms. Nature 1992;360:264–265.PubMedCrossRefGoogle Scholar
  53. 53.
    McLean A, Michie C. Viral burden in AIDS. Nature 1993;365:301.PubMedCrossRefGoogle Scholar
  54. 54.
    Tough DF, Sprent J. Turnover of naive-and memory-phenotype T cells. J Exp Med 1994;179:1127–1135.PubMedCrossRefGoogle Scholar
  55. 55.
    Ameisen JC, Capron A. Cell dysfunction and depletion in AIDS: the programmed cell death hypothesis. Immunol Today 1991;12:102–105.PubMedCrossRefGoogle Scholar
  56. 56.
    Ameisen JC. Programmed cell death and AIDS: from hypothesis to experiment. Imm Today 1992;13:388–391.CrossRefGoogle Scholar
  57. 57.
    Groux H, Monte D, Bourrez JM, Capron A, Ameisen JC. A mechanism for CD4+ T-cell dysfunction and depletion in AIDS: activation-induced programmed cell death by apoptosis. Immunology 1991;312:599–606.Google Scholar
  58. 58.
    Gougeon ML, Montagnier L. Apoptosis in AIDS. Science 1993;260:1269–1270.PubMedCrossRefGoogle Scholar
  59. 59.
    Re MC, Zauli G, Gibellini et al. Uninfected haematopoietic progenitor (CD34+) cells purified from the bone marrow of AIDS patients are committed to apoptotic cell death in culture. AIDS 1993;7:1049–1055.PubMedCrossRefGoogle Scholar
  60. 60.
    Banda NK, Bernier J, Kurahara DK, Kurrle R, Haigwood N, Sekaly RP, Finkel TH. Crosslinking CD4 by human immunodeficiency virus gp120 primes T cells for activation-induced apoptosis. J Exp Med 1992;176:1099–1106.PubMedCrossRefGoogle Scholar
  61. 61.
    Kerr JFR, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomena with wide-ranging implications in tissue kinetics. Br J Cancer 1972;26:239–257.PubMedCrossRefGoogle Scholar
  62. 62.
    Iseki R, Mukai M, Iwata M. Regulation of T lymphocyte apoptosis. J Immunol 1991;147:4286–4292.PubMedGoogle Scholar
  63. 63.
    Sheppard HW, Ascher MS. AIDS and programmed cell death. Immunol Today 1999;12:423.CrossRefGoogle Scholar
  64. 64.
    Lewis DE, Tang DSN, Adu-Oppong A, Schober W, Rodgers JR. Anergy and apoptosis in CD8+ T cells from HIV-infected persons. J Immunol 1994;153:412–420.PubMedGoogle Scholar
  65. 65.
    Howie SEM, Sommerfield AJ, Gray E, Harrison DJ. Peripheral T lymphocyte depletion by apoptosis after CD4 ligation in vivo: selective loss of CD44- and “activating” memory T cells. Clin Exp Imm 1994;95:195–200.CrossRefGoogle Scholar
  66. 66.
    Palmer E. Infectious origins of superantigens: one of the mysteries of the Mls antigens of mice has been solved by the discovery that they are encoded by endogenous retroviruses. Curr Biol 1991;1:74–76.PubMedCrossRefGoogle Scholar
  67. 67.
    Hugin AW, Vacchio MS, Morse HC. Avirus-encoded “superantigen” in a retrovirus-induced immunodeficiency syndrome of mice. Science 1991;252:424–427.PubMedCrossRefGoogle Scholar
  68. 68.
    Coffin JM. Superantigens and endogenous retroviruses: a confluence of puzzles. Science 1992;255:411–413.PubMedCrossRefGoogle Scholar
  69. 69.
    McCormack JE, Callahan JE, Kappler J, Marrack PC. Profound deletion of mature T cells in vivo by chronic exposure to exogenous superantigen. J Immunol 1993;150:3785–3792.PubMedGoogle Scholar
  70. 70.
    Held W, Acha-Orbea H, MacDonald HR, Waanders GA. Superantigens and retroviral infection: insights from mouse mammary tumor virus. Immunol Today 1994;15:184–190.PubMedCrossRefGoogle Scholar
  71. 71.
    Dadaglio G, Garcia S, Montagnier L, Gougeon ML. Selective anergy of VB8+ T cells in human immunodeficiency virus-infected individuals. J Exp Med 1994;179:413–424.CrossRefGoogle Scholar
  72. 72.
    Imberti L, Sottini A, Bettinardi A, Puoti M, Primi D. Selective depletion in HIV infection of T cells that bear specific T cell receptor V-beta sequences. Science 1991;254:860–862.PubMedCrossRefGoogle Scholar
  73. 73.
    Gougeon ML, Dadaglio G, Garcia S, Muller-Alouf H, Roue R, Montagnier L. Is a dominant superantigen involved in AID pathogenesis. Lancet 1993;342:50–51.PubMedCrossRefGoogle Scholar
  74. 74.
    Weber GF, Cantor H. HIV glycoprotein as a superantigen. Amechanism ofautoimmunity and implications for a vaccination strategy. Med Hypotheses 1993;41:247–250.PubMedCrossRefGoogle Scholar
  75. 75.
    Sheppard HW, Ascher MS. Superantigens, alloreactivity, immunologic tolerance and AIDS: A unified hypothesis. In: Perelson A, Weissbuch G, Couthino A, eds. Theoretical and Experimental Insights into Immunology. New York, Springer-Verlag. 1992 (in press).Google Scholar
  76. 76.
    Theodore AC, Kornfeld H, Wallace RP, Cruikshank WW. CD4 modulation of noninfected human T lymphocytes by HIV-1 envelope glycoprotein gp120: contributions to the immunosuppression seen in HIV-1 infection by induction of CD4 and CD3 unresponsiveness. JAWS 1994;7:899–907.Google Scholar
  77. 77.
    Landman D, Sarai A, Sathe SS. Use of pentoxifylline therapy for patients with AIDS-related wasting: pilot study. Clin Inf Dis 1994;18:97–99.CrossRefGoogle Scholar
  78. 78.
    Dezube BJ. Pentoxifylline for the treatment of infection with human immunodeficiency virus. Clin Inf Dis 1994;18:285–287.CrossRefGoogle Scholar
  79. 79.
    Mole L, Margolis D, Ghotbi L, Holodniy M. The use of pentoxifylline alone in HIV-infected patients. JAIDS 1994;7:519–521.Google Scholar
  80. 80.
    Andrieu J-M, Even P, Venet A, et al. Effects of cyclosporin on T-cell subsets in human immunodeficiency virus disease. Cl Im Impth 1988;46:181–198.Google Scholar
  81. 81.
    Phillips A, Wainberg M, Coates R, et al. Cyclosporine-induced deterioration in patients with AIDS. Can Med Assoc J 1989;140:1456–1460.Google Scholar
  82. 82.
    Andrieu JM, Even P, Tourani JM, Beldjord K, Audroin C. Results of a 2-year exploratory study with cyclosporin a in human immunodeficiency virus infection. In Autoimmune Aspects of HIV Infection, ed. J-M. Andrieu, J-F. Bach and P. Even, 1988, pp. 191–194.. Pub. by Royal Soc. Med. Serv. Ltd.Google Scholar
  83. 83.
    Karpas A, Lowdell M, Jacobson SK, Hill F. Inhibition of human immunodeficiency virus and growth of infected T cells by the immunosuppressive drugs cyclosporin A and FK 506. Proc Natl Acad Sci USA 1992;89:8351–8355.PubMedCrossRefGoogle Scholar
  84. 84.
    Schwarz A, Offerman G, Keller F, Bennhold I, L’Age-Stehr J, Krause PH, Mihatsch MJ. The effect of cyclosporine on the progression of human immunodeficiency virus type 1 infection transmitted by transplantation-data on four cases and review of the literature. Transplantation 1993;55:95–103.PubMedCrossRefGoogle Scholar
  85. 85.
    Bass HZ, Hardy D, Mitsuyasu RT, et al. The effect of zidovudine treatment on serum neopterin and beta2-microglobulin levels in mildly symptomatic, HIV type 1 seropositive individuals. JAIDS 1992;5:215–221.Google Scholar
  86. 86.
    Sarin A, ClericiM, Blatt SP, Hendrix CW, Shearer GM, Henkart PA. Inhibition of activation-induced programmed cell death and restoration of defective immune responses of HIV+ donors by cysteine protease inhibitors. J Immunol 1994;153:862–872.PubMedGoogle Scholar
  87. 87.
    Cheng J, Zhou T, Liu C, et al. Protection from fas-mediated apoptosis by a soluble form of the fas molecule. Science 1994;263:1759–1762.PubMedCrossRefGoogle Scholar
  88. 88.
    Kroemer G, Martinez-A C. Pharmacological inhibition of programmed lymphocyte death. Immunol Today 1994;15:235–242.PubMedCrossRefGoogle Scholar
  89. 89.
    Zinkernagel RM, Hengartner H. T-cell-mediated immunopathology versus direct cytolysis by virus: implications for HIV and AIDS. Immunol Today 1994;15:262–268.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Michael S. Ascher
    • 1
  • Haynes W. Sheppard
    • 1
  • John F. Krowka
    • 1
  • Hans J. Bremermann
    • 1
  1. 1.Viral and Rickettsial Disease LaboratoryCalifornia Department of Health ServicesBerkeleyUSA

Personalised recommendations