Skip to main content

Wave Front Propagation for KPP-Type Equations

  • Chapter
Surveys in Applied Mathematics

Abstract

The following equation was considered in [15]:

$$ \frac{{\partial u\left( {t,x} \right)}}{{\partial t}} = \frac{D}{2}\frac{{{\partial ^2}u}}{{\partial {x^2}}} + f\left( u \right),t > 0,x \in {R^1},u\left( {0,x} \right) = \chi - \left( x \right) = \left\{ {\begin{array}{*{20}{c}} {1,x \leqslant 0} \\ {0,x > 0.} \end{array}} \right. $$
(1.1.1)

Here D > 0 and f (u) = c(u)u,where the function c(u) is supposed to be Lipschitz continuous, positive for u < 1 and negative for u > 1, and such that c = c(0) = max0≤u≤1 c(u). Let us denote the class of such functions f (u) by F 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Barles, L. C. Evans, and P. E. Souganidis, Wave front propagation for reaction-diffusion systems of PDE, Duke Math. J. 62, 835–838 (1990).

    Article  MathSciNet  Google Scholar 

  2. S. Carmona, An asymptotic problem for a reaction-diffusion equation with a fast diffusion component, Stochastic and Stoch. Reports 52, 43–80 (1995).

    MathSciNet  MATH  Google Scholar 

  3. L. C. Evans and P. E. Souganidis, A PDE approach to geometric optics for certain semilinear parabolic equations, Indiana U. Math. J. 38, 141–172 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  4. M. I. Freidlin, Propagation of concentration waves by a random motion connected with growth, DokL Akad. Nauk SSSR 246, 544–548 (1979).

    MathSciNet  Google Scholar 

  5. M. I. Freidlin, On wave front propagation in periodic media, In Stochastic Analysis and Applications (M. A. Pinsky, ed.), Marcel Decker, New York, pp. 147–166,1984.

    Google Scholar 

  6. M. I. Freidlin, Limit theorems for large deviations and reaction-diffusion equations, Ann. Probab. 13, 639–675 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  7. M. I. Freidlin, Functional Integration and Partial Differential Equations, Princeton U. Press, 1985.

    MATH  Google Scholar 

  8. M. I. Freidlin, Coupled reaction-diffusion equations, Ann. Probab. 19(1), 29–57 (1990).

    Article  MathSciNet  Google Scholar 

  9. M. I. Freidlin, Semi-linear PDEs and limit theorems for large deviations, pp. 1–107, Lectures in the Summer School in Probability, Saint Flour 1990, Lecture Notes in Mathematics 1527, Springer-Verlag, New York.

    Google Scholar 

  10. M. I. Freidlin and T.-Y. Lee, Wave front propagation and large deviations for diffusion-transmutation processes, submitted to Theory Probab. Appl.

    Google Scholar 

  11. M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems, Springer-Verlag, New York, 1984.

    Book  MATH  Google Scholar 

  12. M. I. Freidlin and A. D. Wentzell, Diffusion processes on graph and averaging principle, Ann. Probab. 21, 4, 2215–2245 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Gärtner and M. I. Freidlin, On the propagation of concentration waves in periodic and random media, Dokl. Akad. Nauk SSSR 249, 521–525 (1979).

    MathSciNet  Google Scholar 

  14. T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1976.

    Book  MATH  Google Scholar 

  15. A. Kolmogorov, I. Petrovskii, and N. Piskunov, Êtude de l’équation de la diffusion avec croissence de la matière at son application a un probleme biologique, Moscow Univ. Bull. Math. 1, 1–24 (1937).

    Google Scholar 

  16. S. R. S. Varadhan, On the behavior of the fundamental solution of the heat equation with variable coefficients, Commun. Pure AppL Math. 20(2), 431–455, (1967).

    Article  MathSciNet  MATH  Google Scholar 

  17. S. R. S. Varadhan, Large Deviations and Applications, Society for Industrial and Applied Mathematics, Philadelphia, 1984.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Freidlin, M. (1995). Wave Front Propagation for KPP-Type Equations. In: Surveys in Applied Mathematics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1991-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1991-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5821-3

  • Online ISBN: 978-1-4615-1991-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics