Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 368))

Abstract

Liver failure, one of the primary causes of death around the world, may occur within days as a result of acute hepatic failure or over many years in chronic conditions such as alcoholic fatty liver or cirrhosis. When the liver fails, or when blood is shunted past the liver, hyperammonemia results and brain function deteriorates: a disorder known as hepatic encephalopathy [1–5]. This syndrome is manifest by signs that range from a rapidly developing sequence of delirium, convulsions and coma in acute hepatic necrosis to a more gradually developing intellectual impairment that may lead to stupor and coma in patients with chronic liver disease. The latter form is more prevalent and may affect millions of people to some degree [6, 7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams RD, Foley JM. The neurological disorder associated with liver disease. Res Publ Assoc Nerve Ment Dis 1953;32:198–237.

    CAS  Google Scholar 

  2. Sherlock S, Summerskill WHJ, White LP, Phear EA. Portal-systemic encephalopathy. Neurological complications of liver disease. Lancet 1954;2:453–457.

    Article  Google Scholar 

  3. Plum F, Hindfelt B. The neurological complications of liver disease. In: Vinken PJ, Bruyn GW,Klawans HL, eds. Metabolic and Deficiency Diseases of the Nervous System. Part I, 27. New York: American Elsevier Publishing Co. Inc., 1976:349–377.

    Google Scholar 

  4. Zieve L. Hepatic encephalopathy: summary of present knowledge with an elaboration on recent developments. In: Popper H, Schaffner F, eds. Progress in Liver Diseases, 6. New York: Grune and Stratton, 1979:327–341.

    Google Scholar 

  5. Hoyumpa Jr. AM, Desmond PV, Avant GR, Roberts RK, Schenker S. Hepatic encephalopathy.Gastroenterology 1979;76:184–195.

    PubMed  Google Scholar 

  6. Mendenhall DL. Alcoholic Hepatitis. Clin Gastroenterol 1981;10:417–441.

    PubMed  CAS  Google Scholar 

  7. Scheig R. That demon rum. Am J Gastroenerol 1991;86:150–152.

    CAS  Google Scholar 

  8. Gilberstadt SJ, Gilberstadt H, Zieve L, Buegel B, Collier Jr. RO, McClain CJ. Psychomotor performance defects in cirrhotic patients without overt encephalopathy. Arch Intern Med 1980;140:519–521.

    Article  PubMed  CAS  Google Scholar 

  9. Rikkers L, Jenko P, Rudman D, Freides D. Subclinical hepatic encephalopathy: detection,prevalence, and relationship to nitrogen metabolism. Gastroenterology 1978;75:462–469.

    PubMed  CAS  Google Scholar 

  10. Elsass P, Lund Y, Ranek L. Encephalopathy in patients with cirrhosis of the liver. A neuro-psychological study. Scand J Gastroenterol 1978;13:241–247.

    Article  PubMed  CAS  Google Scholar 

  11. Butterworth RF, Giguere JF, Michaud J, Lavoie J, Pomier-Layrargues G. Ammonia: key factor in the pathogenesis of hepatic encephalopathy. Neurochem Pathol 1987;6:1–12.

    Article  PubMed  CAS  Google Scholar 

  12. Cooper AJ, Plum F. Biochemistry and physiology of brain ammonia. Physiol Rev 1987;67:440–519.

    PubMed  CAS  Google Scholar 

  13. Sherlock S. Chronic portal systemic encephalopathy: update 1987. Gut 1987;28:1043–1048.

    Article  PubMed  CAS  Google Scholar 

  14. Sies H, Haüssinger D. Hepatic glutamine and ammonia metabolism. Nitrogen redox balance and the intracellular glutamine cycle. In: Haüssinger D, Sies H, eds. Glutamine metabolism in mammalian tissues., New York: Springer-Verlag, 1984:78–97.

    Chapter  Google Scholar 

  15. Kaiser S, Gerok W, Häussinger D. Ammonia and glutamine metabolism in human liver slices: new aspects on the pathogenesis of hyperammonaemia in chronic liver disease. Eur J Clin Invest 1988;18:535–542.

    Article  PubMed  CAS  Google Scholar 

  16. Souba WW, Smith RJ, Wilmore DW. Glutamine metabolism by the intestinal tract. J Parenter Ent Nutr 1985;9:608–617.

    Article  CAS  Google Scholar 

  17. Hanson PJ, Parsons DS. Transport and metabolism of glutamine and glutamate in small intestine.In: Kvamme E, eds. Glutamine and glutamate in mammals, I. Boca: CRC Press, Inc., 1988:235–253.

    Google Scholar 

  18. Souba WW. Glutamine: A key substrate for the splanchnic bed. Annu Rev Nutr 1991;11:285–308.

    Article  PubMed  CAS  Google Scholar 

  19. Windmueller HG. Metabolism of vascular and luminal glutamine by intestinal mucosa in vivo. In:Gayssubgerm D, Sies H, eds. Glutamine Metabolism in Mammalian Tissues, Berlin: Springer-Verlag, 1984:61–77.

    Chapter  Google Scholar 

  20. Cholopoff AD. Herkunft und Verteilung des Blutammoniaks nach Untersuchungen an angiostomierten Hunden. Pflüger’s Arch ges Physiol 1927;218:670–676.

    Article  Google Scholar 

  21. Walser M, Bodenloos LI. Urea metabolism in man. J Clin Invest 1959;38:1617–1626.

    Article  PubMed  CAS  Google Scholar 

  22. Jones EA, Smallwood RA, Craigie A, Rosenoer VM. The enterohepatic circulation of urea nitrogen. Clin Sci 1969;37:825–836.

    PubMed  CAS  Google Scholar 

  23. Summerskill WHJ, Wolpert E. Ammonia metabolism in the gut. Am J Clin Nutr 1970;23:633–639.

    PubMed  CAS  Google Scholar 

  24. Wolpert E, Phillips SF, Summerskill WHJ. Transport of urea and ammonia production in the human colon. Lancet 1971;2:1387–1390.

    Article  PubMed  CAS  Google Scholar 

  25. Vince A, Down PF, Murison J, Twigg FJ, Wrong OM. Generation of ammonia from non-urea sources in a faecal incubation system. Clin Sci Mol Med 1976;51:313–322.

    PubMed  CAS  Google Scholar 

  26. Bown RL, Gibson JA, Fenton JCB, Snedden W, Clark ML, Sladen GE. Ammonia and urea transport by the excluded human colon. Clin Sci Mol Med 1975;48:279–287.

    CAS  Google Scholar 

  27. Gibson JA, Park NJ, Sladen GE, Dawson AM. The role of the colon in urea metabolism in man. Clin Sci Mol Med 1976;50:51–59.

    PubMed  CAS  Google Scholar 

  28. Wrong OM, Vince AJ, Waterlow JC. The origins and bacterial metabolism of faecal ammonia. In:Kasper H, Goebbel H, eds. Falk Symposium 32, Colon and Nutrition, 1981:133–139.

    Google Scholar 

  29. Nance FC, Kline DG. Eck’s fistula encephalopathy in germfree dogs. Ann Surg 1971;174:856–861.

    Article  PubMed  CAS  Google Scholar 

  30. Schalm SW, Van Der Mey T. Hyperammonemic coma after hepatectomy in germ-free rats.Gastroenterology 1979;77:231–234.

    PubMed  CAS  Google Scholar 

  31. van Leeuwen PAM. Ammonia generation in the gut and the influence of lactulose and neomycin.1985, University of Maastricht (Thesis)

    Google Scholar 

  32. Weber FLJ, Veach GL. The importance of the small intestine in gut ammonium production in the fasting dog. Gastroenterology 1979;77:235–240.

    PubMed  Google Scholar 

  33. Jungermann K, Katz N. Metabolic heterogeneity of liver parenchyma. In: Sies H, eds. Metabolic compartmentation, London, New York: Academic Press, 1982:411–435.

    Google Scholar 

  34. Häussinger D. Nitrogen metabolism in liver: structural and functional organization and physiological relevance. Biochem J 1990;267:181–290.

    Google Scholar 

  35. Gebhardt R. Mecke D. Heterogeneous distribution of glutamine synthetase among rat liver parenchymal cells in situ and in primary culture. Embo J 1983;2:567–570.

    PubMed  CAS  Google Scholar 

  36. Gaasbeek Janzen JW, Lamers WH, Moorman AFM, De Graaf A, Los JA, Charles R.Immunohistochemical localization of carbamoyl-phosphate synthetase (ammonia) in adult rat liver; evidence for a heterogeneous distribution. J Histochem Cytochem 1984;32:557–564.

    Article  Google Scholar 

  37. Lusty CJ. Carbamoylphosphate synthetase I of rat-liver mitochondria. Eur J Biochem 1978;85:373–383.

    Article  PubMed  CAS  Google Scholar 

  38. Häussinger D. Hepatocyte heterogeneity in glutamine and ammonia metabolism and the role of an intercellular glutamine cycle during ureogenesis in perfused rat liver. Eur J Biochem 1983;133:269–275.

    Article  PubMed  Google Scholar 

  39. Deuel TF, Louie M, Lerner A. Glutamine synthetase from rat liver. J Biol Chem 1978;253:6111–6118.

    PubMed  CAS  Google Scholar 

  40. Hawkins RA, Mans AM. Brain energy metabolism in hepatic encephalopathy. In: Butterworth RF, Pomier-Layrargues G, eds. Hepatic Encephalopathy, Clifton, NJ: Humana Press Inc., 1989:159–176.

    Chapter  Google Scholar 

  41. Mans AM, Biebuyck JF, Davis DW, Hawkins RA. Portacaval anastomosis: brain and plasma metabolite abnormalities and the effect of nutritional therapy. J Neurochem 1984;43:697–705.

    Article  PubMed  CAS  Google Scholar 

  42. Mans AM, Biebuyck JF, Shelly K, Hawkins RA. Regional blood-brain barrier permeability to amino acids after portacaval anastomosis. J Neurochem 1982;38:705–717.

    Article  PubMed  CAS  Google Scholar 

  43. James JH, Escourrou J, Fischer JE. Blood-brain neutral amino acid transport activity is increased after portacaval anastomosis. Science 1978;200:1395–1397.

    Article  PubMed  CAS  Google Scholar 

  44. Mans AM, Biebuyck JF, Saunders SJ, Kirsch RE, Hawkins RA. Tryptophan transport across the blood-brain barrier during acute hepatic failure. J Neurochem 1979;33:409–418.

    Article  PubMed  CAS  Google Scholar 

  45. Sarna GS, Bradbury MW, Cremer JE, Lai JC, Teal HM. Brain metabolism and specific transport at the blood-brain barrier after portocaval anastomosis in the rat. Brain Res 1979;160:69–83.

    Article  PubMed  CAS  Google Scholar 

  46. Mans AM, Hawkins RA. Brain monoamines after portacaval anastomosis. Metab Brain Dis 1986;1:45–52.

    Article  PubMed  CAS  Google Scholar 

  47. Mans AM, DeJoseph MR, Davis DW, Viña JR, Hawkins RA. Early establishment of cerebral dysfunction after portacaval shunting. Am J Physiol 1990;258:E104–E110.

    Google Scholar 

  48. DeJoseph MR, Hawkins RA. Glucose consumption decreases throughout the brain only hours after portacaval shunting. Am J Physiol 1991;260:E613–E619.

    PubMed  CAS  Google Scholar 

  49. Sherlock S. Pathogenesis and management of hepatic coma. Am J Med 1958;24:805–813.

    Article  PubMed  CAS  Google Scholar 

  50. Lockwood AH. Metabolic encephalopathies: opportunities and challenges. J Cereb Blood Flow Metab 1987;7:523–526.

    Article  PubMed  CAS  Google Scholar 

  51. Jessy J, Mans AM, DeJoseph MR, Hawkins RA. Hyperammonemia causes many of the changes found after portacaval shunting. Biochem J 1990;272:311–317.

    PubMed  CAS  Google Scholar 

  52. Jessy J, DeJoseph MR, Hawkins RA. Hyperammonemia depresses glucose consumption throughout brain. Biochem J 1991;277:693–696.

    PubMed  CAS  Google Scholar 

  53. Vergara F, Plum F, Duffy TE. a-Ketoglutaramate: Increased concentrations in the cerebrospinal fluid of patients in hepatic coma. Science 1974;183:81–83.

    Article  PubMed  CAS  Google Scholar 

  54. Hourani BT, Hamlin EM, Reynolds TB. Cerebrospinal fluid glutamine as a measure of hepatic encephalopathy. Arch Intern Med 1971;127:1033–1036.

    Article  PubMed  CAS  Google Scholar 

  55. Hawkins RA, Jessy J. Hyperammonemia does not impair brain function in the absence of glutamine synthesis. Biochem J 1991;277:697–703.

    PubMed  CAS  Google Scholar 

  56. Krebs HA. Metabolism of amino acids. IV. The synthesis of glutamine in animal tissue. Biochem J 1936;29:1951–1969.

    Google Scholar 

  57. Weil-Malherbe H. Significance of glutamic acid for the metabolism of nervous tissue. Physiol Rev 1950;30:549–568.

    PubMed  CAS  Google Scholar 

  58. Hawkins RA, Jessy J, Mans AM, De Joseph MR. Effect of reducing brain glutamine synthesis on metabolic signs of hepatic encephalopathy. J Neurochem 1993;60:1000–1006.

    Article  PubMed  CAS  Google Scholar 

  59. Schenker S, Brady CE. Pathogenesis of hepatic encephalopathy. In: Conn HO, Bircher J, eds.Hepatic Encephalopathy: Management with Lactulose and Related Carbohydrates, East Lansing, MI: Medi-Ed Press, 1990:15–30.

    Google Scholar 

  60. Cavanagh JB, Kyu MH. Type II Alzheimer change experimentally produced in astrocytes in the rat. J Neurol Sci 1971;12:63–75.

    Article  PubMed  CAS  Google Scholar 

  61. Norenberg MD. The distribution of glutamine synthetase in the rat central nervous system. J Histochem Cytochem 1979;27:756–762.

    Article  PubMed  CAS  Google Scholar 

  62. Zamora AJ, Cavanagh JB, Kyu MH. Ultrastructural responses of the astrocytes to portocaval anastomosis in the rat. J Neurol Sci 1973;18:25–45.

    Article  PubMed  CAS  Google Scholar 

  63. Bradford HF, Ward HK. Glutamine as a metabolic substrate for isolated nerve-endings: inhibition by ammonium ions. Biochem Soc Trans 1975;3:1223–1226.

    CAS  Google Scholar 

  64. Benjamin AM. Control of glutaminase activity in rat brain cortex in vitro: influence of glutamate,phosphate, ammonium, calcium and hydrogen ions. Brain Res 1981;208:363–377.

    Article  PubMed  CAS  Google Scholar 

  65. Matheson DF, Van den Berg CJ. Ammonia and brain glutamine: inhibition of glutamine degradation by ammonia. Biochem Soc Trans 1975;3:525–528.

    PubMed  CAS  Google Scholar 

  66. Bradford HF, Ward HK, Thomas AJ. Glutamine -A major substrate for nerve endings. J Neurochem 1978;30:1453–1459.

    Article  PubMed  CAS  Google Scholar 

  67. Hamberger A, Hedquist B, Nystrom B. Ammonium ion inhibition of evoked release of endogenous glutamate from hippocampal slices. J Neurochem 1979;33:1295–1302.

    Article  PubMed  CAS  Google Scholar 

  68. Butterworth RF, Lavoie J, Giguere JF, Layrargues GP, Bergeron M. Cerebral GABA-ergic and glutamatergic function in hepatic encephalopathy. Neurochem Pathol 1987;6:131–144.

    Article  PubMed  CAS  Google Scholar 

  69. Raabe W. Ammonium decreases excitatory synaptic transmission in cat spinal cord in vivo. J Neurophysiol 1989;62:1461–1473.

    PubMed  CAS  Google Scholar 

  70. Raabe W. Effects of NH4+ on the function of the CNS. Adv Exp Med Biol 1991;272:89–98.

    Google Scholar 

  71. Raabe W. Ammonia and postsynaptic inhibition in cat motor cortex. In: Klee MR, Lux HD, Speckmann E-J, eds. Physiology and Pharmacology of Epileptogenic Phenomena, New York: Raven Press, 1982:73–80.

    Google Scholar 

  72. Raabe W. Neurophysiology of ammonia intoxication. In: Butterworth R, Pomier-Layragues G, eds. Hepatic Encephalopathy: Pathophysiology and Treatment, Clifton, NJ: Humana Press, Inc., 1989:49–77.

    Google Scholar 

  73. James JH, Hodgman JM, Funovics JM, Fischer JE. Alterations in brain octopamine and brain tyrosine following portacaval anastomosis in rats. J Neurochem 1976;27:223–227.

    Article  PubMed  CAS  Google Scholar 

  74. Mans AM, Biebuyck JF, Hawkins RA. Ammonia selectively stimulates neutral amino acid transport across blood-brain barrier. Am J Physiol 1983;245:C74–C77.

    PubMed  CAS  Google Scholar 

  75. Bachmann C, Colombo JP. Increase of tryptophan and 5-hydroxyindole-acetic acid in the brain of ornithine carbamoyltransferase deficient sparse-fur mice. Pediatr Res 1984;18:372–375.

    Article  PubMed  CAS  Google Scholar 

  76. Jonung T, Rigotti P, Jeppsson B, James JH, Peters JC, Fischer JE. Methionine sulfoximine prevents the accumulation of large neutral amino acids in brain of hyperammonemic rats. J Surg Res 1984;36:349–353.

    Article  PubMed  CAS  Google Scholar 

  77. Jeppsson B, James JH, Edwards LL, Fischer JE. Relationship of brain glutamine and brain neutral amino acid concentrations after portacaval anastomosis in rats. Eur J Clin Invest 1985;15:179–187.

    Article  PubMed  CAS  Google Scholar 

  78. Rigotti P, Jonung T, Peters JC, James JH, Fischer JE. Methionine sulfoximine prevents the accumulation of large neutral amino acids in brain of portacaval-shunted rats. J Neurochem 1985;44:929–933.

    Article  PubMed  CAS  Google Scholar 

  79. Hawkins RA, Jessy J. Hyperammonemia does not impair brain function in the absence of net glutamine synthesis. Biochem J 1991;277:697–703.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hawkins, R.A., Mans, A.M. (1994). Brain Metabolism in Encephalopathy Caused by Hyperammonemia. In: Felipo, V., Grisolia, S. (eds) Hepatic Encephalopathy, Hyperammonemia, and Ammonia Toxicity. Advances in Experimental Medicine and Biology, vol 368. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1989-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1989-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5820-6

  • Online ISBN: 978-1-4615-1989-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics