Advertisement

Ornithine Transcarbamylase Deficiency: A Model for Gene Therapy

  • Manal A. Morsy
  • C. Thomas Caskey
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 368)

Abstract

Ornithine transcarbamylase (EC 2.1.3.3.) deficiency (OTCD) is the most common and severe defect of the urea cycle disorders. It is an X-linked disorder with a high new mutation rate and variable phenotypic consequences. The enzyme catalyses the condensation of carbamyl phosphate and ornithine to citrulline in the second step of the urea cycle. It is expressed mainly in the liver and intestine (approximately 30% of liver levels), and is targeted to the mitochondria in which it assumes its homotrimeric active form.

Keywords

Cystic Fibrosis Transmembrane Conductance Regulator Primary Hepatocyte Familial Hypercholesterolemia Orotic Acid Ornithine Transcarbamylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maestri N., Hauser E., Bartholomew D., Brusilow S.W., 1991, Prospective treatment of urea cycle disorder, J. Pediatr. 119:923–928.PubMedCrossRefGoogle Scholar
  2. 2.
    Bmsilow, S. W. and Horwich, A. L. In: The metabolic basis of inherited disease, Vol 6 (Scriver CR, Beaudet AL, Sly WS and Valle D, Eds) New York: McGraw-Hill, pp 629–670. (1989)Google Scholar
  3. 3.
    Finkelstein J., Hauser E., Leonard C., Brusilow S., 1990, Late-onset ornithine transcarbamylase deficiency in male patients, J. Pediatr. 117(6):(6)897–902.PubMedGoogle Scholar
  4. 4.
    Batshaw M., Msall M., Beaudate A., Trojak J., 1986, Risk of serious illness in heterozygotes for Ornithin Transcarbamylase deffeciency, J. Pediatr. 108:236–241.PubMedCrossRefGoogle Scholar
  5. 5.
    Rowe P., Newman S., Brusilow S.W., 1986, Natural history of symptomatic partial ornithine transcarbamylase deficiency, New Engl Med, 314:541–547.CrossRefGoogle Scholar
  6. 6.
    Arn P.H., Hauser E.R., Thomas G.H., Herman G., Hess D., Brusilow S.W., 1990, Hyperammonemia in women with a mutation in the ornithine transcarbamylase locus: a cause of postpartum coma., New Engl J Med, 322:1652–1655.PubMedCrossRefGoogle Scholar
  7. 7.
    Morsy M.A., Mitani K., Clemens P., Caskey C.T., 1993, Progress towards human gene therapy,JAMA, 270:2338–2345.PubMedCrossRefGoogle Scholar
  8. 8.
    Ponder K.P., Gupta S., Leland F., Darlington G., Finegold M., DeMayo J., Ledley F.D., Chowdhury J.R., Woo S.L.C., 1991, Mouse hepatocytes migrate to liver parenchyma and function indefinitely after intrasplenic transplantation. Proc. Natl. Acad. Sci. USA, 88:1217–1221.PubMedCrossRefGoogle Scholar
  9. 9.
    Chowdhury J.R., Grossman M., Gupta S., Chowdhury N.R., Baker J.R. Jr., Wilson J.M., 1991,Long-term improvement of hypercholesterolemia after ex vivo gene therapy in LDLR-deficient rabbits, Science, 254:1802–1805.PubMedCrossRefGoogle Scholar
  10. 10.
    Ledley F.D., Woo S.L.C., Ferry G.D., Whisennand H.H., Brandt M.L., Darlington G.J., Demmler G.J., Finegold M.J., Pokorny W.J., Rosenblatt H., Schwart P., Anderson W.F., Moen R.C., 1991, Clinical protocol: hepatocellular transplantation in acute hepatic failure and targeting genetic markers to hepatic cells, Hum. Gene. Ther., 2:331–358.PubMedCrossRefGoogle Scholar
  11. 11.
    Wilson J., Grossman M., Raper S., Baker J.J., Newton R., Thoene J., 1992, Ex vivo gene therapy of familial hypercholesterolemia, Hum. Gene. Ther., 3:179–222.PubMedCrossRefGoogle Scholar
  12. 12.
    Cristiano R., Smith L., Kay M., Brinkley B., Woo S., 1993, Hepatic gene therapy: efficient gene delivery and expression in primary hepatocytes utilizing a conjugated adenovirus-DNA complex, Proc. Natl. Acad. Sci. USA, 90:11548–11552.PubMedCrossRefGoogle Scholar
  13. 13.
    Human gene marker/therapy clinical protocols, 1994, Hum. Gene Ther., 5(2):271–280.CrossRefGoogle Scholar
  14. 14.
    Graham, F. L. and Prevec, L. Manipulation of adenovirus vectors. In: Methods in Molecular Biology, edited by E.J.Clifton, NJ: The Humana Press Inc., 1991, p. 109–128.Google Scholar
  15. 15.
    Horwitz, M. S. Field’s Virology (2nd), edited by B. N. Fields and D. M. Knipe, NY: Raven Press,1990, p. 1679–1721.Google Scholar
  16. 16.
    Quantin, B., Perricaudet, L.D., Tajbakhsh, S., Mandel. J.L., 1992, Adenovirus as an expression vector in muscle cells in vivo, Proc. Natl. Acad. Sci. USA. 89:2581–2584.PubMedCrossRefGoogle Scholar
  17. 17.
    Stratford-Perricaudet, L., Makeh, I., Perricaudet, M., Briand, P., 1992, Widespread long-term gene transfer to mouse skeletal muscles and heart, J. Clin. Invest., 90:626–630.PubMedCrossRefGoogle Scholar
  18. 18.
    Ragot, T., Vincent, N., Chafey, P., Vigne, E., Gilgenk-Rantz, H., Couton, D., Cartaud, J., Briand,P., Kaplan, J.-C., Perricaudet, M., Kahn, A., 1993, Efficient adenovirus-mediated transfer of a human minidystrophin gene to skeletal muscle of mdx mice, Nature, 361:647–650.PubMedCrossRefGoogle Scholar
  19. 19.
    Bout, A., Perricaudet, M., Baskin, G., Imler, J.-L., Scholte, B.J., Pavirani, A., Valerio, D., 1994,Lung gene therapy: in vivo adenovirus-mediated gene transfer to Rhesus monkey airway epithelium, Hum. Gene Ther., 5(1):3–10.PubMedCrossRefGoogle Scholar
  20. 20.
    Rich, D.P., Anderson, M.P., Gregory, S.H., Cheng, S.H., Paul, S., Jefferson, D.M., McCann, J.D., Klinger, K.W., Smith, A.E., Welsh, M.J., 1990, Expression of cystic fibrosis transmembrane conductance regulator corrects defective chloride channel regulator in cystic fibrosis airway epithelial cells. Nature, 347:358–363.PubMedCrossRefGoogle Scholar
  21. 21.
    Rosenfeld, M.A., Yoshimura, K., Trapnell, B.C., Yoneyama, K., Rosenthal, W., Dalemans, W.,Fukayama, M., Bargon, J., Stier, L.E., Stratford-Perricaudet, L., et al. ., 1992, In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epitheluim. Cell, 68:143–155.PubMedCrossRefGoogle Scholar
  22. 22.
    Stratford-Perricaudet, L.D., Levrero, M., Chasse, J.-F., Perricaudet, M., Briand, P., 1990,Evaluation of the Transfer and Expression in Mice of an Enzyme-Encoding Gene Using a Human Adenovirus Vector. Hum. Gene Ther., 1:241–256.PubMedCrossRefGoogle Scholar
  23. 23.
    Kozarsky K., Grossman M., Wilson J.M., 1993, Adenovirus-mediated correction of the genetic defect in hepatocytes from pateints with familial hypercholesterolemia, Somat. Cell Mol. Genet, 19:449–458.PubMedCrossRefGoogle Scholar
  24. 24.
    Ishibashi S., Brown M.S., Goldstein J.L., Gerard R.D., Hammer R.E., Herz J., 1993,Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery, J. Clin. Invest., 92:883–893.PubMedCrossRefGoogle Scholar
  25. 25.
    Kay M.A., Landen C.N., Rothenberg S.R., Taylor LA., Leland F., Wiehle S., Fang B., Bellinger D., Finegold M., Thompson A.R., Read M., Brinkhous K.M., Woo S.L., 1994, In vivo hepetic gene therapy: complete albeit transeint correction of factor IX deficiency in hemophilia B dogs, Proc. Natl. Acad. Sci. USA, 91:2353–2357.PubMedCrossRefGoogle Scholar
  26. 26.
    Gushiken T., Yoshimura N., Saheki T., 1985, Transient hyperammonemia during ageing in ornithine transcarbamylase-deficient, sparse-fur mice, Biochem. Int., 11:637–643.PubMedGoogle Scholar
  27. 27.
    DeMars R., LeVan S.L., Trend B.L., Russell L.B., 1976, Abnormal ornithine carbamoyltransferase in mice having the sparse-fur mutation, Proc. Natl. Acad. Sci. USA, 73:1693–1697.PubMedCrossRefGoogle Scholar
  28. 28.
    Briand P., Cathelineau L., Kamoun P., Gigot D., Penninckx M., 1981, Increase in ornithine transcarbamylase protein in sparse-fur mice with ornithine transcarbamylase deficiency, FEBS lett., 130:65–68.PubMedCrossRefGoogle Scholar
  29. 29.
    Hulbert, L., Cordy, C. & Doolittle, D., 1974, A new allele of the sparse fur gene in the mouse,J. Hered., 65:194–195.PubMedGoogle Scholar
  30. 30.
    Hodges, P. E. & Rosenberg, L. E., 1989, The spfash mouse: A missence mutation in the ornithine transcarbamylase gene also causes aberrant mRNA splicing, Proc. Natl. Acad. Sci. USA, 86:4142–4146.PubMedCrossRefGoogle Scholar
  31. 31.
    Jones S.N., Grompe M., Munir M.I., Veres G., Craigen W.J., Caskey C.T., 1990, Ectopic correction of ornithine transcarbamylase deficiency in sparse fur mice, J. Biol. Chem., 265:14684–14690.PubMedGoogle Scholar
  32. 32.
    Carvard C., Grimber G., Dubois N., Chasse J.F., Bennoun M., Minet T.M., Kamoun P., Briand P., 1988, Correction of mouse ornithine transcarbamylase deficiency by gene transfer into the germ line, Nucl. Acids. Res., 16:2099–2110.CrossRefGoogle Scholar
  33. 33.
    Grompe M., Jones S.N., Loulseged H., Caskey C.T., 1992, Retroviral-mediated gene transfer of human ornithine transcarbamylase into primary hepatocytes of spf and spf-ash mice, Hum. Gene Ther., 3:35–44.PubMedCrossRefGoogle Scholar
  34. 34.
    Takebe Y., Seiki M., J.-I. F., P. H., Yokota K., Arai K.-I., Yoshida M., Arai M., SRa promoter:an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-US segment of human T-cell leukemia virus type-1 long terminal repeat, Mol. Cell. Biol., 8:466–472.Google Scholar
  35. 35.
    Morsy M.A., Alford E.L., Bett A., Graham F.L., Caskey C.T., 1993, Efficient adenoviral-mediated OTC expression in deficient mouse and human hepatocytes, J. Clin. Invest., 92:1580–1586.PubMedCrossRefGoogle Scholar
  36. 36.
    MacGregor, G. R. and Caskey, C. T., 1989, Construction of plasmids that express E. coli ß-galactosidase in mammalian cells, Nucl. Acids. Res., 17:2365.PubMedCrossRefGoogle Scholar
  37. 37.
    Quershi, I. A., Letarte, J., Ouellet, R., 1979, Ornithine transcarbamylase deficiency in mutant mice:Studies on the charecterization of enzyme defect and suitability as animal models of human disease, Pediatr. Res., 13:807–811.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Manal A. Morsy
    • 1
  • C. Thomas Caskey
    • 1
  1. 1.Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUSA

Personalised recommendations