Skip to main content

Neomycin Reduces the Intestinal Production of Ammonia from Glutamine

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 368))

Abstract

The mechanism by which neomycin treatment reduces circulating ammonia concentrations was studied in normal and portacaval shunted rats. Rats were given neomycin for 3 days and then fasted for 24 hours to eliminate feces. Neomycin decreased arteriovenous differences of ammonia across the intestine even when the intestines were empty. Neomycin treatment lowered the activity of glutaminase in the intestinal mucosa and the rate of ammonia production from glutamine by isolated intestinal segments. The intestines from portacaval shunted rats had higher glutaminase activity (by 57%), and produced ammonia from glutamine at a greater rate (by 31%), than intestines from controls. Neomycin treatment lowered glutaminase activity and ammonia production in shunted rats, but glutaminase activity still remained higher than in controls (by 23%). The data indicate that the mechanism by which neomycin lowers plasma ammonia is owing, at least in part, to a direct effect on the intestines. Specifically, neomycin causes a reduction in mucosal glutaminase activity and thereby decreases the ability of the mucosa to consume glutamine and produce ammonia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McDermott Jr. WV, Adams RD. Episodic stupor associated with an Eck fistula in the human with particular reference to the metabolism of ammonia. J Clin Invest 1954;33:1–9.

    Article  PubMed  CAS  Google Scholar 

  2. Sherlock S, Summerskill WHJ, White LP, Phear EA. Portal-systemic encephalopathy. Neurological complications of liver disease. Lancet 1954;2:453–457.

    Article  Google Scholar 

  3. Nencki M, Pawlow JP, Zaleski J. Ueber den Ammoniakgehalt des Blutes und der Organe und die Harnstoffbildung bei den Säugethieren. Arch Exp Path Pharm 1896;37:26–51.

    Google Scholar 

  4. Hahn M, Massen O, Nencki M, Pawlow J. Die Eck’sche Fistel zwischen der unteren Hohlvene und der Pfortader und ihre Folgen für den Organismus. Arch Exp Path Pharm 1896;32:161–210.

    Google Scholar 

  5. Horodynski W, Salaskin S, Zaleski J. Ueber die Vertheilung des Ammoniaks im Blute und den Organen normaler und hungernder Hunde. Zeitschr Physiol Chem 1902;35:246–263.

    Article  CAS  Google Scholar 

  6. Salaskin S. Ueber das Ammoniak in physiologischer und pathologischer Hinsicht und die Rolle der Leber im Stoffwechsel stickstoffhaltiger Substanzen. Zeitschr Physiol Chem 1898;25:449–491.

    Article  CAS  Google Scholar 

  7. Folin O, Denis W. Protein metabolism from the standpoint of blood and tissue analysis. J Biol Chem 1912;11:161–167.

    Google Scholar 

  8. Sherlock S. Chronic portal systemic encephalopathy: update 1987. Gut 1987;28:1043–1048.

    Article  PubMed  CAS  Google Scholar 

  9. Smith RJ. Glutamine metabolism and its physiologic importance. J Parenter Enteral Nutr 1990;14:40s–44s.

    Article  CAS  Google Scholar 

  10. Felig P, Wahren J, Karl I, Cerasi E, Luft R, Kipnis DM. Glutamine and glutamate metabolism in normal and diabetic subjects. Diabetes 1973;22:573–576.

    PubMed  CAS  Google Scholar 

  11. Hanson PJ, Parsons DS. Transport and metabolism of glutamine and glutamate in small intestine.In: Kvamme E, eds. Glutamine and Glutamate in Mammals, I. Boca Raton: CRC Press, Inc., 1988:235–253.

    Google Scholar 

  12. Windmueller HG. Metabolism of vascular and luminal glutamine by intestinal mucosa in vivo. In:Gayssubgerm D, Sies H, eds. Glutamine Metabolism in Mammalian Tissues, Berlin: Springer-Verlag, 1984:61–77.

    Chapter  Google Scholar 

  13. Cooper AJ, Plum F. Biochemistry and physiology of brain ammonia. Physiol Rev 1987;67:440–519.

    PubMed  CAS  Google Scholar 

  14. Sies H, Haüssinger D. Hepatic glutamine and ammonia metabolism. Nitrogen redox balance and the intracellular glutamine cycle. In: Haüssinger D, Sies H, eds. Glutamine Metabolism in Mammalian Tissues, New York: Springer-Verlag, 1984:78–97.

    Chapter  Google Scholar 

  15. Warren KS, Newton WL. Portal and peripheral blood ammonia concentrations in germ-free and conventional guinea pigs. Am J Physiol 1959;197:717–720.

    PubMed  CAS  Google Scholar 

  16. Nance FC, Kline DG. Eck’s fistula encephalopathy in germfree dogs. Ann Surg 1971;174:856–861.

    Article  PubMed  CAS  Google Scholar 

  17. Schalm SW, Van Der Mey T. Hyperammonemic coma after hepatectomy in germ-free rats.Gastroenterology 1979;77:231–234.

    PubMed  CAS  Google Scholar 

  18. van Leeuwen PAM. Ammonia generation in the gut and the influence of lactulose and neomycin.1985, University of Maastricht (Thesis)

    Google Scholar 

  19. Weber FLJ, Veach GL. The importance of the small intestine in gut ammonium production in the fasting dog. Gastroenterology 1979;77:235–240.

    PubMed  Google Scholar 

  20. Silen W, Harper HA, Mawdsley DL, Weirich WL. Effect of antibacterial agents on ammonia production within the intestine. Proc Soc Exp Biol Med 1955;88:138–140.

    PubMed  CAS  Google Scholar 

  21. DeJoseph MR, Hawkins RA. Glucose consumption decreases throughout the brain only hours after portacaval shunting. Am J Physiol 1991;260:E613–E619.

    Google Scholar 

  22. Bergmeyer HU, ed. Methods of Enzymatic Analysis. 2nd ed. Vol. I-IV. 1974, Academic Press:New York. 2299.

    Google Scholar 

  23. Eccleston EG. A method for the estimation of free and total acid soluble plasma tryptophan using an ultrafiltration technique. Clin Chim Acta 1973;48:269–272.

    Article  PubMed  CAS  Google Scholar 

  24. Ardawi MSM, Newsholme EA. Maximum activities of some enzymes of glycolysis, the tricarboxylic acid cycle and ketone-body and glutamine utilization pathways in lymphocytes of the rat. Biochem J 1982;208:743–748.

    PubMed  CAS  Google Scholar 

  25. Curthoys NP, Lowry OH. The distribution of glutaminase isoenzymes in the various structures of the nephron in normal, acidotic, and alkalotic rat kidney. J Biol Chem 1973;248:162–168.

    PubMed  CAS  Google Scholar 

  26. Jessy J, Mans AM, DeJoseph MR, Hawkins RA. Hyperammonemia causes many of the changes found after portacaval shunting. Biochem J 1990;272:311–317.

    PubMed  CAS  Google Scholar 

  27. Souba WW. Glutamine: A key substrate for the splanchnic bed. Annu Rev Nutr 1991;11:285–308.

    Article  PubMed  CAS  Google Scholar 

  28. Fisher CJ, Faloon WW. Blood ammonia levels in hepatic cirrhosis. Their control by the oral administration of neomycin. N Engl J Med 1957;256:1030–1035.

    Article  PubMed  CAS  Google Scholar 

  29. Walser M, Bodenloos LJ. Urea metabolism in man. J Clin Invest 1959;38:1617–1626.

    Article  PubMed  CAS  Google Scholar 

  30. Wolpert E, Phillips SF, Summerskill WHJ. Transport of urea and ammonia production in the human colon. Lancet 1971;2:1387–1390.

    Article  PubMed  CAS  Google Scholar 

  31. Vince A, Down PF, Murison J, Twigg FJ, Wrong OM. Generation of ammonia from non-urea sources in a faecal incubation system. Clin Sci Mol Med 1976;51:313–322.

    PubMed  CAS  Google Scholar 

  32. Bown RL, Gibson JA, Fenton JCB, Snedden W, Clark ML, Sladen GE. Ammonia and urea transport by the excluded human colon. Clin Sci Mol Med 1975;48:279–287.

    CAS  Google Scholar 

  33. Dobbins WO, Herrero BA, Mansbach CM. Morphologic alterations associated with neomycin induced malabsorption. Am J Med Sci 1968;255:63–77.

    Article  PubMed  Google Scholar 

  34. Jacobson ED, Prior JT, Faloon WW. Malabsorptive syndrome induced by neomycin: morphologic alterations in the jejunal mucosa. J Lab Clin Med 1960;56:245–250.

    PubMed  CAS  Google Scholar 

  35. van Leeuwen PA, Drukker J, van der Kleyn NM, van den Boogaard AE, Soeters PB.Morphological effects of high dose neomycin sulphate on the small and large intestine. Acta Morphol Neerl Scand 1986;24:223–234.

    PubMed  Google Scholar 

  36. Faloon WW, Paes IC, Woolfolk D, Nankin H, Wallace K, Haro EN. Effect of neomycin and kanamycin upon intestinal absorption. Ann N Y Acad Sci 1966;132:879–887.

    Article  PubMed  CAS  Google Scholar 

  37. Hayman H, Fisher CJ, Duggan KC, Rubert MW, Faloon WW. Effect of fat-poor diet upon neomycin induced malabsorption. Gastroenterology 1964;47:161–165.

    PubMed  CAS  Google Scholar 

  38. Jacobson ED, Chodos RB, Faloon WW. An experimental malabsorption syndrome induced by neomycin. Am J Med 1960;28:524–533.

    Article  PubMed  CAS  Google Scholar 

  39. Coy DL, Srivastava A, Gottstein J, Butterworth RF, Blei AT. Postoperative course after portacaval anastomosis in rats is determined by the portacaval pressure gradient. Am J Physiol 1991;261:G1072–G1078.

    PubMed  CAS  Google Scholar 

  40. Vergara F, Plum F, Duffy TE. a-Ketoglutaramate: Increased concentrations in the cerebrospinal fluid of patients in hepatic coma. Science 1974;183:81–83.

    Article  PubMed  CAS  Google Scholar 

  41. Hawkins RA, Jessy J. Hyperammonemia does not impair brain function in the absence of net glutamine synthesis. Biochem J 1991;277:697–703.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hawkins, R.A., Jessy, J., Mans, A.M., Chedid, A., DeJoseph, M.R. (1994). Neomycin Reduces the Intestinal Production of Ammonia from Glutamine. In: Felipo, V., Grisolia, S. (eds) Hepatic Encephalopathy, Hyperammonemia, and Ammonia Toxicity. Advances in Experimental Medicine and Biology, vol 368. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1989-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1989-8_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5820-6

  • Online ISBN: 978-1-4615-1989-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics