The Ultrasonic Modeling Code Efit as Applied to Inhomogeneous Dissipative Isotropic and Anisotropic Media

  • R. Marklein
  • R. Bärmann
  • K. J. Langenberg
Chapter

Abstract

The NDE of real-life situations is based on elastic (ultrasonic) wave propagation, diffraction and scattering in dissipative inhomogeneous isotropic or anisotropic media. Physical phenomena of elastic waves are described by linear Cauchy’s equation of motion and equation of deformation rate [1, 2]. Interpretation of the very complicated behavior of elastic waves, especially in inhomogeneous anisotropic media, requires powerful computational tools to model and study advanced NDT situations. Such a tool is the well-established Elastodynamic Finite Integration Technique (EFIT) basically formulated by Fellinger [3, 4]. Recently, EFIT has been extented to simulate elastic waves in dissipative (viscoelastic) and homogeneous anisotropic media [5, 6].

Keywords

Attenuation Ferrite Hexagonal Refraction Geophysics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. A. Auld, Acoustic Fields and Waves in Solids, Krieger, Malabar (1990)Google Scholar
  2. 2.
    J. H. M. T. van der Hijden, Propagation of Transient Elastic Waves in Stratified Anisotropic Media, North-Holland, Elsevier, Amsterdam (1987)MATHGoogle Scholar
  3. 3.
    P. Fellinger, Ph. D. Thesis, University of Kassel, Kassel, Germany (1989)Google Scholar
  4. 4.
    P. Fellinger, R. Marklein, K. J. Langenberg, S. Klaholz, to appear in Wave Motion, January (1995)Google Scholar
  5. 5.
    R. Marklein, S. Klaholz, P. Fellinger, K. J. Langenberg, to appear in the Proceedings of the DGZfP-Jahrestagung 1994, DGZfP, Berlin (1994)Google Scholar
  6. 6.
    R. Marklein, R. Bärmann, K. J. Langenberg, to appear in the Proceedings of the DGZfP-Jahrestagung 1994, DGZfP, Berlin (1994)Google Scholar
  7. 7.
    L. J. Bond, M. Punjani, and N. Saffari, in Mathematical Modelling in Non-Destructive Testing, edited by M. Blakemore and G. A. Georgiou, Clarendon Press, Oxford (1988) pp. 81–124.Google Scholar
  8. 8.
    R. Ludwig and W. Lord, IEEE Trans. Ultrason., Ferroelec, Freq. Contr., Vol. 35, No. 6, (1988) pp. 809–820.CrossRefGoogle Scholar
  9. 9.
    J. Virieux, Geophysics, Vol. 51, No. 4, (1986) pp. 889–901.CrossRefGoogle Scholar
  10. 10.
    K. S. Yee, IEEE Trans. Antennas Propagat., Vol. 14, No. 3, (1966) pp. 302–307.MATHCrossRefGoogle Scholar
  11. 11.
    M. Bartsch et al, Computer Physics Commun., Vol. 72, (1992) pp. 22–39.MathSciNetCrossRefGoogle Scholar
  12. 12.
    R. L. Higdon, SIAM J. of Numer. Anal., Vol. 27, No. 4 (1990) pp. 831–870.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    G. Kürschner, Diploma I Thesis, University of Kassel, Kassel, Germany (1993)Google Scholar
  14. 14.
    R. Marklein, Report, University of Kassel, Kassel, Germany (1994)Google Scholar
  15. 15.
    R. D. Richtmyer and K. W. Morton, Difference Methods for Initial Value Problems, 2nd ed., Wiley, New York (1994)MATHGoogle Scholar
  16. 16.
    C. Hofmann, P. Fellinger, K. J. Langenberg, M. Rudolph, to appear in the Proceedings of the DGZfP-Jahrestagung 1994, DGZfP, Berlin (1994)Google Scholar
  17. 17.
    R. Bärmann, Report, University of Kassel, Kassel, Germany (1994)Google Scholar
  18. 18.
    R. J. Hudgell and H. Seed, British J. of NDT, No. 3 (1980) pp. 78–85.Google Scholar
  19. 19.
    J. A. Ogilvy, Ultrasonics, Vol. 24, (1986) pp. 337–347.CrossRefGoogle Scholar
  20. 20.
    S. Klaholz, F. Walte, K. J. Langenberg, P. Baum, in these Proceedings.Google Scholar
  21. 21.
    M. Rudolph, K. J. Langenberg, D. E. Chimenti, in these Proceedings.Google Scholar

Copyright information

© Plenum Press, New York 1995

Authors and Affiliations

  • R. Marklein
    • 1
  • R. Bärmann
    • 1
  • K. J. Langenberg
    • 1
  1. 1.Department of Electrical EngineeringUniversity of KasselKasselGermany

Personalised recommendations