Effect of Fiber-Matrix Interphase on Low Frequency Ultrasonic Wave Scattering: Spring B.C. Approach

  • W. Huang
  • S. I. Rokhlin
Chapter

Abstract

In modern metal matrix and ceramic matrix composites fiber-matrix interphases are specially designed to improve the fracture toughness of a composite, and to prevent fiber-matrix chemical reaction. As the interphase transfers load from the fiber to the matrix, the state of the bond between the interphase and the surrounding materials (fiber or matrix) determines the overall mechanical performance of the composite. Ultrasonic scattering from such interphases carries important information on the fiber itself and its bonding with the surrounding matrix material, thus having potential for fiber-matrix interphase characterization. Much work has been done on the study of wave scattering from cylindrical objects embedded in elastic media since 1950, owing to the importance of the subject [1–6]. Recent studies address scattering from coated fibers in composites [7–12].

Keywords

Fatigue Titanium Anisotropy Attenuation Verse 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.F. Ying and R. Truell, J. Appl. Phys. 27, 1086 (1956).MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    R.M. White, J. Acous. Soc. Am. 30, 771 (1958).CrossRefGoogle Scholar
  3. 3.
    V.V. Tyutekin, J. Sov. Phys. Acous. 5(1), 105 (1959).Google Scholar
  4. 4.
    Y.H. Pao and C.C. Mow, Diffraction of Elastic Waves and Dynamic Stress Concentrations, (Crane, Russack, New York, 1973).Google Scholar
  5. 5.
    D.J. Jain and R.P. Kanwal, J. Appl. Phys. 50, 4067 (1979).CrossRefGoogle Scholar
  6. 6.
    P. Beattie, R.C. Chivers and L.W. Anson, J. Acous. Soc. Am. 94, 3421 (1993).CrossRefGoogle Scholar
  7. 7.
    A.N. Sinclair and R.C. Addison, Jr., J. Acous. Soc. Am. 94, 1126 (1993).CrossRefGoogle Scholar
  8. 8.
    T.E. Matikas and P. Kapur, J. Appl. Phys. 74, 228 (1993).CrossRefGoogle Scholar
  9. 9.
    W. Huang, S. Brisuda and S.I. Rokhlin, in Review of Progress in QNDE, Vol. 13, eds. D.O. Thompson and D.E. Chimenti (Plenum, New York, 1994), p. 1367.Google Scholar
  10. 10.
    A.K. Mal and R.-B. Yang, Review of Progress in QNDE, Vol. 13, eds. D.O. Thompson and D.E. Chimenti (Plenum, New York, 1994), p. 1453.Google Scholar
  11. 11.
    W. Huang and S.I. Rokhlin, J. Acous. Soc. Am. 97(1), (1995).Google Scholar
  12. 12.
    W. Huang and S.I. Rokhlin, “Frequency Dependences on Ultrasonic Wave Velocity and Attenuation in Fiber Composites. Theory and Experiments”, this volume.Google Scholar
  13. 13.
    Y.C. Chu and S.I. Rokhlin, J. Acoust. Soc. Am., 92, 920 (1992).CrossRefGoogle Scholar
  14. 14.
    Y.C. Chu, S.I. Rokhlin and G.Y. Baaklini, J. Eng. Mat. Tech., 115, 237 (1993).CrossRefGoogle Scholar
  15. 15.
    Y.C. Chu and S.I. Rokhlin, J. Appl. Phys. 76, 4121 (1994).CrossRefGoogle Scholar
  16. 16.
    S.I. Rokhlin, Y.C. Chu and W. Huang, in Symposium on Wave Propagation and Emerging Technologies, AMD-Vol. 188, eds. V.K. Kinra, R.J. Clifton and G.C. Johnson (ASME 1994), p. 29.Google Scholar
  17. 17.
    R.M. Christensen, Mechanics of Composite Materials, 2nd edition, (Krieger Publishing, Malabar, FL 1991).Google Scholar
  18. 18.
    J.M. Baik and R.B. Thompson, J. Nondestr. Eval., 4, 177 (1984).CrossRefGoogle Scholar
  19. 19.
    Z. Hashin, Mechanics of Materials, 8, 333 (1990).CrossRefGoogle Scholar
  20. 20.
    W. Huang and S.I. Rokhlin, Geophys. J. Int., 118, 285 (1994).CrossRefGoogle Scholar
  21. 21.
    R. Bass, J. Acoust. Soc. Am., 30, 602 (1958).MathSciNetCrossRefGoogle Scholar
  22. 22.
    R. Truell, C. Elbaum and B.B. Chick, Ultrasonic Methods in Solid State Physics, (Academic Press, New York, 1969).Google Scholar

Copyright information

© Plenum Press, New York 1995

Authors and Affiliations

  • W. Huang
    • 1
  • S. I. Rokhlin
    • 1
  1. 1.Department of Welding EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations