Studies of Fetal Porcine Islet-Like Cell Clusters—A Tissue Source for Xenotransplantation in Insulin-Dependent Diabetes Mellitus?

  • S. Sandler
  • L. Jansson
  • J.-O. Sandberg
  • N. Salari-Lak
  • A. Andersson
  • C. Hellerström


Insulin-dependent diabetes mellitus (IDDM) is an autoimmune disease characterized by the selective destruction of the insulin-producing β-cells from the pancreatic islets (Gepts, 1965; Eisenbarth, 1986). The disease is insidious, and does not become manifest until approximately 90% of the β-cells are lost. The disease can be treated with insulin which, despite its prolongation of life of the patients, cannot succesfully prevent long-term complications of the disease, such as blindness, nephropathy, neuropathy and cardiovascular disease. To obtain a strictly physiological minute-to-minute regulation of the glucose metabolism, the only possible treatment today is replacement of the lost pancreatic β-cells. This can be accomplished by transplantation of the whole pancreas, meaning that only 1% of the transplanted organ, i.e. the islets, are really necessary. This treatment is hampered by technical complications (Robertson, 1992), and to transplant only the needed endocrine component of the pancreas would therefore be preferable. The isolation and purification of islets from adult cadaveric human donors has now become sufficiently successful to warrant clinical trials (Gray et al., 1984, Ricordi et al., 1988), and a few patients have been, at least temporarily, cured of their disease (Scharp et al., 1991; Warnock et al., 1991). These results are encouraging since they demonstrate that this surgically simple procedure may offer a new treatment modality for IDDM. One major drawback with transplantations in IDDM is the immunogenicity of the implanted islets, which may result both in graft rejection and disease recurrence with the development of the underlying disease also in the graft (Gill and Lafferty, 1989).


Nude Mouse Pancreatic Islet Islet Transplantation Insulin Content Kidney Capsule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alumets, J., Håkanson, R., and Sundler, F., 1985, Ontogeny of endocrine cells in porcine gut and pancreas. An immunocytochemical study, Gastroenterology 85: 1359–1372.Google Scholar
  2. Andersen, H. U., Jørgensen, K. H., Egeberg, J., Mandrup-Poulsen, T., and Nerup, J., 1994, Nicotinamide prevents interleukin-1 effects on accumulated insulin release and nitric oxide production in rat islets of Langerhans, Diabetes 43:710–111.CrossRefGoogle Scholar
  3. Andersson, A., and Sandler, S., 1992, Fetal pancreatic transplantation, Transplant. Rev. 6:20–38.CrossRefGoogle Scholar
  4. Auchincloss, H., 1990, Xenografting: a review, Transplant. Rev. 4:14–27.CrossRefGoogle Scholar
  5. Benjamin, R. C., and Gill, D., 1980, ADP-ribosylation in mammalian cell ghosts, J. Biol. Chem. 255:10493–10501.PubMedGoogle Scholar
  6. Bjöersdorff, A., Korsgren, O., Andersson, A., Tollemar, J., Malmborg, A.-S., Ehrnst, A., and Groth, C.-G., 1992, Microbiologic screening as a preparatory step for clinical xenografting of porcine fetal islet-like cell clusters, Transplant. Proc. 24:674–676.PubMedGoogle Scholar
  7. Bjöersdorff, A., Korsgren, O., Feinstein, R., Andersson, A., Tollemar, J., Malmborg, A.-S., Ehrnst, A., and Groth, C.-G., 1994, Microbiologial characterization of porcine fetal islet-like cell clusters for clinical xenografting, Xenotransplantion In press.Google Scholar
  8. Brown, J., Molnar, I. G., Clark, W., and Mullen, Y., 1974, Control of experimental diabetes mellitus in rats by transplantation of fetal pancreas, Science 184:1377–1379.PubMedCrossRefGoogle Scholar
  9. Cetkovic-Cvrlje, M., Sandler, S., and Eizirik, D. L., 1993, Nicotinamide and dexamethasone inhibit interleukin induced nitric oxide production by RINm5F cells without decreasing messenger ribonucleic acid expression for nitric oxide synthase, Endocrinology 133:1739–1743.PubMedCrossRefGoogle Scholar
  10. DeKrijger, R. R., Aanstoot, H. J., Kranenburg, G., Reinhard, M., Visser, W. J., and Bruining, G. J., 1992, The midgestational human fetal pancreas contains cells coexpressing islet hormones, Dev. Biol. 153:368–375.CrossRefGoogle Scholar
  11. Eisenbarth, G. S., 1986, Type I diabetes mellitus. A chronic autoimmune disease, N.Engl. J. Med. 314:1360–1368.PubMedCrossRefGoogle Scholar
  12. Gepts, W., 1965, Pathological anatomy of the pancreas in juvenile diabetes mellitus, Diabetes 14:619–633.PubMedGoogle Scholar
  13. Gill, R. G., 1992, The role of direct and indirect antigen presentation in the response to islet xenografts, Transplant. Proc. 24:642–643.PubMedGoogle Scholar
  14. Gill, R. G., and Lafferty, K. J., 1989, The role of islet transplantation in the treatment of insulin-dependent diabetes mellitus, Immunol. Allergy Clin. North Am. 9:165–186.Google Scholar
  15. Gray, D. W. R., McShane, P., Grant, A., and Morris, P. J., 1984, A method for isolation of islets of Langerhans from the human pancreas, Diabetes 33:1055–1061.PubMedCrossRefGoogle Scholar
  16. Groth, C.-G., Korsgren, O., Tibell, A., Tollemar, J., Moller, E., Bolinder, J., Östman, J., Reinholt, F. P., Hellerström, C., and Andersson, A., 1994, Transplantation of porcine fetal pancreas to diabetic patients: biochemical and histological evidence of xenograft survival, Lancet In pressGoogle Scholar
  17. Groth, C.-G., Korsgren, O., Andersson, A., Hellerström, C., Bjöersdorff, A., Tibell, A., Tollemar, J., Bolinder, J., Östman, J., Kumagai, M, and Möller, E., 1992, Evidence of xenograft function in a diabetic patient grafted with porcine fetal pancreas, Transplant. Proc. 24:972–973.PubMedGoogle Scholar
  18. Heding, L. G., 1972, Determination of total serum insulin (IRI) in insulin-treated patients, Diabetologia 8:260–266.PubMedCrossRefGoogle Scholar
  19. Hellerström, C., Lewis, N. J., Borg, H., Johnson, R., and Freinkel, N, 1979, Method for large-scale isolation of pancreatic islets by tissue culture of fetal rat pancreas, Diabetes 28:769–776.PubMedGoogle Scholar
  20. Hinegardner, R. T., 1971, An improved fluorometric assay for DNA, Anal. Biochem. 39:197–201.PubMedCrossRefGoogle Scholar
  21. Hole R.L., Pian-Smith M. C. M., and Sharp G.W.G., 1988, Development of the biphasic response to glucose in fetal and neonatal rat pancreas, Am. J. Physiol. 254: E167–E174.PubMedGoogle Scholar
  22. Kissane, J. M., and Robins, E., 1958, The fluorometric measurement of deoxyribonucleic acid in animal tissues with special reference to the central nervous system, J. Biol. Chem. 233:184–188.PubMedGoogle Scholar
  23. Krebs, H. A., and Henseleit, K., 1932, Untersuchungen über die Harnstoffbildung im Tierkörper, Hoppe-Seylers Z. Physiol. Chem. 210:33–66.CrossRefGoogle Scholar
  24. Korsgren, O., Andersson, A., and Sandler, S., 1993a, In vitro screening of putative compounds inducing fetal porcine pancreatic β-cell differentiation: implications for cell transplantation in insulin-dependent diabetes mellitus, Upsala J. Med. Sci. 98:39–52.PubMedCrossRefGoogle Scholar
  25. Korsgren, O., Andersson, A., and Sandler, S., 1993b, Pretreatment of fetal porcine pancreas in culture with nicotinamide accelerates reversal of diabetes after transplantation to nude mice, Surgery 113:205–214.PubMedGoogle Scholar
  26. Korsgren, O., and Jansson, L, 1994, Characterization of mixed syngeneic-allogeneic and syngeneic-xenogeneic islet-graft rejections in mice. Evidence of functional impairment of the remaining syngeneic islets in xenograft rejections, J. Clin. Invest. 93:1113–1119.PubMedCrossRefGoogle Scholar
  27. Korsgren, O., Jansson, L., and Andersson, A., 1989, Effects of hyperglycemia on function of isolated mouse pancreatic islets transplanted under the kidney capsule, Diabetes 38:510–515.PubMedCrossRefGoogle Scholar
  28. Korsgren, O., Jansson, L., Eizirik, D., Andersson, A., 1991, Functional and morphological differentiation of fetal porcine islet-like cell clusters after transplantation into nude mice, Diabetologia 34:379–386.PubMedCrossRefGoogle Scholar
  29. Korsgren, O., Sandler, S., Jansson, L., Groth, C.-G., Hellerström, C., and Andersson, A., 1989, Effects of culture conditions on formation and hormone content of fetal porcine isletlike cell clusters, Diabetes 38(Suppl. 1): 209–212.PubMedGoogle Scholar
  30. Korsgren, O., Sandler, S., Schnell Landström, A., Jansson, L., and Andersson, A., 1988, Large-scale production of fetal porcine pancreatic isletlike cell clusters. An experimental tool for studies of islet cell differentiation and xenotransplantation, Transplantation 45: 509–514.PubMedCrossRefGoogle Scholar
  31. Kumagai-Braesch, M., Satake, M., Korsgren, O., Andersson, A., and Möller, E., 1993, Characterization of cellular human anti-porcine xenoreactivity, Clin. Transplant. 7:273–280.Google Scholar
  32. Liu, X., Federlin, K. E, Bretzel, R. G., Hering, H. J., and Brendel, M. D., 1991, Persistent reversal of diabetes by transplantation of fetal pig proislets into nude mice, Diabetes 40:858–866.PubMedCrossRefGoogle Scholar
  33. Lukinius, A., Ericsson, J. L. E., Grimelius, L., and Korsgren O., 1992, Ultrastructural studies of the ontogeny of fetal human and porcine pancreas, with special reference to colocalization of the four major islet hormones, Dev. Biol. 153:376–385.PubMedCrossRefGoogle Scholar
  34. Malaisse, W. J., 1983, Insulin release: the fuel concept, Diabete Metab. 119:313–320.Google Scholar
  35. Otonkoski, T., Beattie, G. M., Mally, M. I., Ricordi, C., and Hayek, A., 1993, Nicotinamide is a potent inducer of endocrine differentiation in cultured human fetal pancreatic cells, J. Clin. Invest. 92:1459–1466.PubMedCrossRefGoogle Scholar
  36. Rabinovitch, A., 1993, Role of cytokines in IDDM pathogenesis and islet β-cell destruction, Diabetes Rev. 1:215–240Google Scholar
  37. Ricordi, C., Lacy, P.E., Finke, E.H., Olack, B.J., and Scharp, D. W, 1988, Automated method for isolation of human pancreatic islets, Diabetes 37:413–420.PubMedCrossRefGoogle Scholar
  38. Robertson, P.R., 1992, Pancreatic and islet transplantation for diabetes -cures or curiosities?, N. Engl. J. Med. 327:1861–1868.PubMedCrossRefGoogle Scholar
  39. Rorsman P., Arkhammar P., Bokvist K., Hellerstrom C., Nilsson T., Welsh M., Welsh N., and Berggren P.-O., 1989, Failure of glucose to elicit a normal insulin secretory repsonse in fetal pancreatic beta cells results from glucose insensitivity of the ATP-regulated K+ channels, Proc. Natl. Acad. Sci. USA 86: 4505–4509.PubMedCrossRefGoogle Scholar
  40. Rydberg, L., Cairns, T. D. H., Groth, C.-G., Gustavsson, M. L., Karlsson, E. C, Moller, E., Satake, M., Tibell, A., Samuelsson, B. E., 1994, Specificities of human IgM and IgG anticarbohydrate xenoantbodies found in the sera of diabetic patients grafted with fetal pig islets, Xenotransplantation 1:69–79.CrossRefGoogle Scholar
  41. Sachs, D. H., and Bach, F. H., 1990, Immunology of xenograft rejection, Hum. Immunol. 28:245–251.PubMedCrossRefGoogle Scholar
  42. Sandberg, J.-O., Korsgren, O., Groth, C.-G., and Andersson, A., 1993, 15-deoxyspergualin prolongs pancreatic islet alio-and xenograft survival in mice, Pharmacol. Toxicol. 73: 24–28.PubMedCrossRefGoogle Scholar
  43. Sandler, S., and Andersson, A., 1986, Long-term effects of exposure of pancreatic islets to nicotinamide in vitro on DNA synthesis, metabolism and B-cell function, Diabetologia 29:199–202.PubMedCrossRefGoogle Scholar
  44. Sandler, S. and Andersson, A., 1988, Nicotinamide treatment stimulates cell replication in transplanted pancreatic islets, Transplantation 46:30–31.PubMedCrossRefGoogle Scholar
  45. Sandler, S., Andersson, A., Korsgren, O., Tollemar, J., Peterson, B., Groth, C.-G., and Hellerstrom, C., 1989, Tissue culture of human fetal pancreas. Effects of nicotinamide on insulin production and formation of isletlike cell clusters, Diabetes 38(Suppl. 1): 168–171.PubMedGoogle Scholar
  46. Sandler, S., Andersson, A., Schnell, A., Mellgren, A., Tollemar, J., Borg, H., Peterson, B., Groth, C.-G., and Hellerstrom, C., 1985, Tissue culture of human fetal pancreas. Development of and function of B-cells in vitro and transplantation of explants to nude mice, Diabetes 34:1113–1119PubMedCrossRefGoogle Scholar
  47. Sandler, S., Eizirik, D. L., Sternesjo, J., and Welsh, N., Role of cytokines in regulation of pancreatic B-cell function., 1994, Biochem. Soc. Trans. 22:26–30.PubMedGoogle Scholar
  48. Sandler, S., Eizirik, D. L., Svensson, C., Strandell, E., Welsh, M., and Welsh, N., 1991, Biochemical and molecular actions of interleukin 1 on pancreatic β-cells, Autoimmunity 10: 241–253.PubMedCrossRefGoogle Scholar
  49. Sandler, S., Welsh, M., and Andersson, A., Streptozotocin-induced impairment of islet B-cell metabolism and its prevention by a hydroxyl radical scavenger and inhibitors of poly(ADP-ribose) synthtase, Acta Pharmacol Toxicol. 53:392–400.Google Scholar
  50. Satake, M., Kumagai-Braesch, M, Kawagishi, N., Tibell, A., Groth, C.-G., and Moller, E., 1994, Kinetics and character of xenoantibody formation in diabetic patients transplanted with fetal porcine islet cell clusters, Xenotransplantation 1:24–3 5.CrossRefGoogle Scholar
  51. Satake, M., Kumagai-Braesch, M., Korsgren, O., Andersson, A., and Moller, E., 1993, Characterization of humoral human anti-porcine xenoreactivity, Clin. Transplant. 7:281–288.Google Scholar
  52. Scharp, D. W, Lacy, P.E., Santiago, J. V, McCullough, C. S., Weide, L. G., Falqui, L., Marchetti, P., Gingerich, R. L., Jaffe, A. S., Cryer, P. E., Anderson, C. B., and Flye, M W., 1990, Insulin independence after islet transplantation into type 1 diabetic patient, Diabetes 39:515–518.PubMedCrossRefGoogle Scholar
  53. Schein, P. S., Cooney, D. A., Vernon, M. L., 1967, The use of nicotinamide to modify the toxicity of streptozotocin diabets without loss of antitumor activity, Cancer Res. 37:2324–2332.Google Scholar
  54. Sutton, R., Gray, D. W, McShane, P., Dallman, M. J., and Morris, P. J., 1989, The susceptibility and the absence of susceptibility of pancreatic islet β cells to nonspecific immune destruction in mixed strain islets grafted beneath the renal capsule in the rat, J. Exp. Med. 170:751–762.PubMedCrossRefGoogle Scholar
  55. Teitelman, G., 1993, On the origin of pancreatic endocrine cells, proliferation and neoplastic transformation, Tumor Biol. 14:167–173.CrossRefGoogle Scholar
  56. Teitelman, G., and Lee, J. K., Cell lineage analysis of pancreatic islet cell development: glucagon and insulin cells arise from catecholaminergic precursors present in the pancreatic duct, Dev. Biol. 121:454–466.Google Scholar
  57. Thomson, A. W, and Starzl, T. E., 1993, New immunosuppressive drugs: mechanistic insights and potential therapeutic advances, Immunol. Rev. 136: 71–138PubMedCrossRefGoogle Scholar
  58. Tibell, A., Groth, C.-G., Möller, E., Korsgren, O., Andersson, A., and Hellerstrom, C., 1994a, Pig-to-man islet transplantation in eight patients, Transplant. Proc. 26:762–763.PubMedGoogle Scholar
  59. Tibell, A., Reinholt, F. P., Korsgren, O., Andersson, A., Hellerstrom, C., Möller, E., and Groth, C.-G., 1994b, Morphological identification of porcine islet cells three weeks after transplantation into a diabetic patient, Transplant. Proc. 26:1121.PubMedGoogle Scholar
  60. Tollemar, J., Groth, C.-G., Korsgren, O., Andersson, A., Blombäck, M, and Olsson, P., 1992, Injection of xenogeneic endocrine pancreatic tissue into the portal vein -Effects on coagulation, liver function, and hepatic hemodynamics. A study in the pig-to-dog model, Transplantation 53:139–142.PubMedCrossRefGoogle Scholar
  61. Ueda, K., and Hayashi, O., 1985, ADP-ribosylation, Annu. Rev. Biochem. 54:73–100.PubMedCrossRefGoogle Scholar
  62. Vague, Ph., Vialettes, B., Lassman-Vague, V, and Vallo, J., 1987; Nicotinamide may extend remission phase in insulin-dependent diabetes, Lancet i:619–620.CrossRefGoogle Scholar
  63. Warnock, G. L., Kneteman, N. H., Ryan, E., Seelis, R. E. A., Rabinovitch, A., and Rajotte, R. V, 1991, Normoglycemia after transplantation of freshly isolated and cryopreserved pancreatic islets in type 1 insulin-dependent diabetes mellitus, Diabetologia 34:55–58.PubMedCrossRefGoogle Scholar
  64. Wilson, J. D., Simeonovic, C. J., Ting, J. H., and Ceredig, R., 1989, Role of CD4+ T-lymphocytes in rejection by mice of fetal pig proislet xenografts, Diabetes 38(Suppl. 1):217–219.PubMedGoogle Scholar
  65. Yonemura, Y., Takashima, T., Miwa, K., Miyasaki, I., Yamamoto, H., and Okamoto, H., 1984, Amelioration of diabetes mellitus in partially pancreatectomized rats by poly(ADP-ribose) synthetase inhibitors. Evidence of islet B-cell regeneration, Diabetes 33:401–404.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • S. Sandler
    • 1
  • L. Jansson
    • 1
  • J.-O. Sandberg
    • 1
  • N. Salari-Lak
    • 1
  • A. Andersson
    • 1
  • C. Hellerström
    • 1
  1. 1.Department of Medical Cell BiologyUppsala University BiomedicumUppsalaSweden

Personalised recommendations