Skip to main content

Expression of Two Non-Allelic Reg Genes in the Developing Human Pancreas: Effects in Vitro of Nicotinamide and Maternal Growth Factors

  • Chapter
Fetal Islet Transplantation

Abstract

Several characteristics make fetal tissue superior to adult tissue for transplantation (1). Thus, fetal cells can often differentiate in response to environmental signals or according to an intrinsic program. This plasticity means that such cells may migrate, grow and establish functional connections with other cells. Additionally, fetal cells may proliferate more rapidly and more often than mature, fully differentiated cells. They may produce high levels of angiogenic factors, which enhance their ability to grow once they are grafted and may also facilitate regeneration of surrounding host tissues (2). Major histocompatibility antigens (HLA’s) are expressed at lower levels in some fetal tissues than in corresponding adult tissues, which makes the fetal tissue less susceptible to rejection by the recipients immune system. Fetal tissue is more resistant to ischemic damage during in vitro manipulation or after transplantation (3), and therefore can survive at lower oxygen tensions than adult tissue, which probably explains why fetal tissues and cells better survive refrigeration or cryopreservation than those of adults (4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Edwards, R.G., 1992, in Fetal Tissue Transplants in Medicine, Cambridge University, Cambridge, England.

    Google Scholar 

  2. Bjorklund, A., Lindvall, O., and Isacson, O., 1987, Michanisms of action of intracerebral neural implants: studies on nigral and striatal grafts to the lesioned striatum. Trands Neurosci. 10:509–516.

    Article  Google Scholar 

  3. Lacy, P., and Davie, J., 1984. Transplantation of pancreatic islets. Ann. Rev. Immunol. 2:183–199.

    Article  CAS  Google Scholar 

  4. Sandler, S., Andersson, A., and Schnell, A., 1985. Tissue culture of human fetal pancreas. Diabetes 34:1113–1119.

    Article  PubMed  CAS  Google Scholar 

  5. Bliss, M., 1982. The discovery of insulin. University of Chicago Press, Chicago, 28–29.

    Google Scholar 

  6. Tuch, B., Ng, A., and Jones, A., 1984, Transplantation of human fetal pancreatic tissue into diabetic nude mice. Transplant. Proc. 16:1059–1061.

    Google Scholar 

  7. Hullett, D., Falany, J.L., and Love, R.B., 1987. Human fetal pancreas -a potential source for transplantation.Transplantation 43:18–22

    Article  PubMed  CAS  Google Scholar 

  8. Bethke, K., Hullett, D., Falany, J., and Love R.B.,1988. Cultured human pancreatic tissue reverses experimentally induced diabetes in nude mice. Curr Surg. 45:123–126.

    PubMed  CAS  Google Scholar 

  9. Elias K., Noonan, R., and Zayas, J., 1990. Development of human fetal xenograft transplants in diabetic nude mice. Transplant. Proc. 22:806–807.

    PubMed  CAS  Google Scholar 

  10. Tuch, B., Monk, R.S., Beretov, J., 1991. Reversal of diabetes in athymic rats by transplantation of human fetal pancreas. Transplantation 52:172–174

    Article  PubMed  CAS  Google Scholar 

  11. Groth, C.G., Andersson, A., and Bjorken, C. 1980. Transplantation of fetal pancreatic microfragments via the portal vein to a diabetic patient. Diabetes 29 (suppl l):80–83.

    PubMed  Google Scholar 

  12. Hu, Y-F., 1985. Clinical studies on islet transplantation in 39 patients with insulin-deprendent (type 1) diabetes mellitus. in Wuhan international symposium on organ transplantation. Wuhan, China, 39–40.

    Google Scholar 

  13. Benikova, E.A., Turchin, I.S., and Beliakova, L.S., 1987. Experience with the treatment of children with diabetes mellitus using allo-and xenografts of cultures of pancreatic islets. Probl. Endokrinol. (Moskwa), 33:19–22.

    CAS  Google Scholar 

  14. Farkas, G., Karacsonyi, S., Szabo, M., and Voros, P. 1990. Alteration in diabetic retinopsathy and nephropathy following islet transplantation. Transplant.Proc. 22:765–766.

    PubMed  CAS  Google Scholar 

  15. Parsons, J.A., Brelje, T.C., and Sorenson, R.L., 1992., Adaptation of islet of Langerhans to pregnancy: increased islet cell proliferation and insulin secretion correlates with the onset of placental lactogen secretion. Endocrinology 130:1459–1466.

    Article  PubMed  CAS  Google Scholar 

  16. Bartholomeusz, R.K., Bruce, N.W., Martin, C.E., Hartman, P.E., (1976). Serial measurement of arterial plasma progesterone levels throughout gestation and parturition in individual rats. Acta Endocrinol (Kbh) 82:436–443.

    CAS  Google Scholar 

  17. Ogren, L., and Talamantes, F., 1988. Prolactins of pregnancy and their cellular source. Int. Rev.Cytol. 112:1–65.

    Article  PubMed  CAS  Google Scholar 

  18. Tyson,R, Hwang, P., Guyda, H., Friesen, H.G., 1972. Studies of prolactin in human pregnancy. Am.J.Obstet.Gynecol. 113:14–20.

    PubMed  CAS  Google Scholar 

  19. Handwerger, S., Freemark, M., 1987. Role of placental lactogen and prolactin in human pregnancy. Adv.Exp.Med.Biol.219:399–420.

    Article  PubMed  CAS  Google Scholar 

  20. Hill, D.J., 1992. What is the role of growth hormone and related peptides in implantation and the development of the embryo and fetus. Hormone Research 38 (suppl l):28–34.

    Article  PubMed  CAS  Google Scholar 

  21. Freemark, M., Kirk, K., Pihoker, C., Robertson, M.C., Shiu, R.P, Driscoll, P., 1993. Pregnancy lactogens in the rat conceptus and fetusxirculating levels, distribution of binding, and expression of receptor messenger ribonucleic acid. Endocrinology 133:1830–1842.

    Article  PubMed  CAS  Google Scholar 

  22. Formby, B., Walker, L., Peterson, CM., 1987. Effects of duration of cold storage and gestational age on the insulin secretory capacity of human fetal pancreatic islets. Diabetes Research 4:113–116.

    PubMed  CAS  Google Scholar 

  23. Brelje, T., Scharp, D., Lacy, P., Ogren, L., Talamantes, F., Robertson, M., Friesen, H., Sorensen, R., 1993. Effect of homologous placental lactogens, prolactins, and growth hormones on islet B-cell division and insulin secretion in rat, mouse and human islets: implication for placental lactogen regulation of islet function during pregnancy. Endocrinology 132:879–887.

    Article  PubMed  CAS  Google Scholar 

  24. Formby, B., Ullrich, A., Coussens, L., Walker, L., Peterson, CM. 1988. Growth hormone stimulates insulin gene expression in cultured human fetal pancreatic islets. J. Clin.Endocrinol.Metab. 66:1075– 1079.

    Article  PubMed  CAS  Google Scholar 

  25. Otonkoski, T., Beattie, G.M., Mally, M.I., Ricordi, C., Hayek, A., 1993. Nicotinamide is a potent inducer of endocrine differentiation in cultured human fetal pancreatic cells. J.Clin.Invest. 92:1459–1466.

    Article  PubMed  CAS  Google Scholar 

  26. Terazono, K., Yamamoto, H., Takasawa, S., 1988. A novel gene activated in regenerating islets. J.Biol.Chem. 263:2111–2114.

    PubMed  CAS  Google Scholar 

  27. Watanebe, T., Yonekura, H., Terazono, K., 1990. Complete nucleotide sequence of Human Reg gene and its expression in normal and tumoral tissues. J.Biol.Chem. 265:7432–7439.

    Google Scholar 

  28. Unno, M., Yonekura. H., Nakagawara, K., 1993, Structure, chromosomal localization, and expression of mouse reg genes, regl and regll. J.Biol.Chem. 268:15974–15982.

    PubMed  CAS  Google Scholar 

  29. Miyaura, C., Chen, L., Appel, M., 1991. Expression of reg/PSP, a pancreatic exocrine gene: relationship to changes in islet beta-cell mass. Mol.Endocxrinol. 5:226–234.

    Article  CAS  Google Scholar 

  30. Moriizumi, S., Watanabe, T., Unno, M., 1994. Isolation, structural determination and expression of a novel reg gene, human regl β. Biochim.Biophys. Acta 1217:199–202.

    Article  PubMed  CAS  Google Scholar 

  31. Yonomura, Y, Takashima, T., Miwa, K. (1984). Amelioration of diabetes mellitus in partially depancreatized rats by poly(ADP-ribose) synthetase inhibitors: evidence of islet p-cell regeneration. Diabetes 33:401–404.

    Article  Google Scholar 

  32. Terazano, K., Uchiyama, Y., Yde, M. 1990. Expression of reg protein in rat regenerating islets and its co-location with insulin in the beta cell secretory granules. Diabetologia 33:250–252.

    Article  Google Scholar 

  33. Unno, M., Itoh, T, Watanabe, T. 1992. Islet beta-cell regeneration and reg genes. Adv. Expl. Med.Biol. 321:61–66.

    Article  CAS  Google Scholar 

  34. Francis, P. J., Southgate, J.L., Wilkin, T.J. 1992. Expression of an islet regenerating (reg) gene in isolated rat islets: effects of nutrient and non-nutrient growth factors. Diabetologia 35:238–242.

    Article  PubMed  CAS  Google Scholar 

  35. Watanabe, T., Yonemura, Y, Yonekera, H. 1994. Pancreatic beta-cell replication and amnilioration of surgical diabetes by Reg protein. Proc.Natl.Acad.Sci. (USA) 91:3589–3592.

    Article  CAS  Google Scholar 

  36. German, M.S., Moss, L.G., Wang, J.,Rutter, W.J. 1991. The insulin and islet amyloid polypeptide genes contain similar cell-specific promotor elements that bind identical beta-cell nuclear complexes. Mol. Cell. Biol. 12:1777–1788.

    Google Scholar 

  37. Pearce, R.B., Trigler, L., Svaasand, E.K., Peterson, CM. 1993, Polymorphism in the mouse Tap-1 gene. Association with abnormal CD8 T cell development in the nonobese nondiabetic mouse. J.Immunol. 151:5338–5347.

    PubMed  CAS  Google Scholar 

  38. Mally, M.I., Otonkoski, T., Lopez, A.D., Hayek, A. 1994. Developmental gene expression in the human fetal pancreas. Pediatr. Res. 36:537–544.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Formby, B., Falzone, J., Loh, S. (1995). Expression of Two Non-Allelic Reg Genes in the Developing Human Pancreas: Effects in Vitro of Nicotinamide and Maternal Growth Factors. In: Peterson, C.M., Jovanovic-Peterson, L., Formby, B. (eds) Fetal Islet Transplantation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1981-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1981-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5816-9

  • Online ISBN: 978-1-4615-1981-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics