Skip to main content

Experiments with Single Atoms, Molecules or Photons

  • Chapter
Advances in Quantum Phenomena

Part of the book series: NATO ASI Series ((NSSB,volume 347))

Abstract

Atoms, molecules or photons have been known for a long time, but only recently has it become possible to manipulate them as single entities and to observe their behaviour directly. Among many other feats, one can now “see” the individual atoms at the surface of a metal with a scanning tunneling microscope (STM)1 or an atomic force microscope (ATM)2, one can manipulate a single DNA molecule with “optical tweezers”3, one can confine an isolated ion in an electromagnetic trap4 or else single out one molecule embedded in a crystal lattice and observe it as it scatters photons from a laser beam5. Not only can we observe single atomic entities, but we can also employ them to perform experiments. Single atoms can for example be used to modify the properties of electromagnetic cavities, to produce non classical fields in “micromaser” devices, and to manipulate and measure the field stored in these cavities, at the single photon, or even at subphoton level6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.Binnig and H.Rohrer, “The Scanning tunneling microscope”, Scientific American, (August 1985)

    Google Scholar 

  2. C.F.Quate, “Vacuum tunneling: a new technique for microscopy”, Phys.Today, 39 (8): 26 (August 1986).

    Article  Google Scholar 

  3. H.K.Wickramasinghe, “Scanned-probe microscopes”. Scientific American, (October 1989).

    Google Scholar 

  4. T.T.Perkins, D.E.Smith and S.Chu, “Direct observation of tube like motion of a single polymer chain”, Science. 264:819 (1994).

    Article  ADS  Google Scholar 

  5. T.T.Perkins, S.R.Quate, D.E.Smith and S.Chu, “Relaxation of a single DNA molecule observed by optical microscopy”, Science. 264:822 (1994).

    Article  ADS  Google Scholar 

  6. P.E.Toschek and W.Neuhauser, “Spectroscopy on localized and cooled ions” in: “Atomic Physics 7”, D.Kleppner and F.Pipikin editors, Plenum Press, New York (1981)

    Google Scholar 

  7. W.Neuhauser, M.Hohenstatt, P.E.Toschek and H.Dehmelt, “Localized visible Ba+ mono-ion oscillator”, Phys.Rev. A22: 1137 (1980).

    ADS  Google Scholar 

  8. M.Orrit, J.Bernard and R.Brown, “Faire de la spectrocopie moléculaire par molecule”, La Recherche, p.1395 (December 1993).

    Google Scholar 

  9. S.Haroche and J.M.Raimond, “Cavity Quantum Electrodynamics”, Scientific American (April 1993).

    Google Scholar 

  10. R.J.Cooke and H.J.Kimble, “Possibility of direct observation of quantum jumps”, Phys.Rev.Lett. 54:1023(1985).

    Article  ADS  Google Scholar 

  11. E.Einstein, B.Podolski and N.Rosen, “Can quantum-mechanical description of physical reality be considered complete?”, Phys.Rev. 47:777 (1935).

    Article  ADS  MATH  Google Scholar 

  12. W.Zurek, “Decoherence and the transition from quantum to classical”, Physics Today, 44(10):36 (October 1991).

    Article  Google Scholar 

  13. P.Zeppenfeld, D.MEigler and E.K.Schweizer, “On manipule même les atomes”, La Recherche, p362 (March 1992).

    Google Scholar 

  14. L.J.Geerligs, V.F.Anderegg, P.A.M.Holweg, LE.Mooij, H.Pothier, D.Esteve, C.Urbina and M.H.Devoret, “Frequency-locked turnstile device for single electrons”, Phys.Rev .Lett. 64:2691 (1990).

    Article  ADS  Google Scholar 

  15. P.Ekstrom and D.Wineland, “The isolated electron”, Scientific American (August 1994).

    Google Scholar 

  16. W.M.Itano, J.C.Bergquist and D.J.Wineland, “Laser spectroscopy of trapped atomic ions”, Science, 237:612 (1987)

    Article  ADS  Google Scholar 

  17. D.J.Wineland, “Trapped ions, laser cooling and better clocks”, Science, 226:395 (1984).

    Article  ADS  Google Scholar 

  18. B.Goss Levi “Clouds of trapped cooled ions condense into crystals”, Physics Today (September 1988).

    Google Scholar 

  19. G. Gabrielse, X.Fei, L.A.Orozco,R. J.Tjoelker, J.Haas, H.Kalonowsky, T.A.Trainor and W.Kells, “Thousandfolf improvement in the measured antiproton mass”, Phys.Rev.lett. 65:1317 (1990).

    Article  ADS  Google Scholar 

  20. R.J.Van Duck, D.L.Farnham and P.B. Schwinberg, “Tritium-Helium 3 mass difference using the Penning trap mass spectroscopy”, Phys.Rev.Lett., 70:2888 (1993)

    Article  ADS  Google Scholar 

  21. V.Natarajan, K.R.Boyce, F.DiFilippo and D.E.Pritchard, “Precision Penning trap comparison of Nondoublets: atomic masses of H,D, and the neutron”, Phys.Rev.Lett. 71:1998 (1993).

    Article  ADS  Google Scholar 

  22. D.J.Wineland and W.MItano, “Laser cooling”, Physics Today (June 1987).

    Google Scholar 

  23. F.Diedrich, J.C.Bergquist, W.M.Itano and D.J.Wineland, “Laser cooling to the zero-point energy of motion”, Phys.Rev.Lett. 62:403 (1989).

    Article  ADS  Google Scholar 

  24. R.Blümel, J.M.Chen, E.Peik, W.Quint, W.Schleich, Y.R.Shen and H.Walther, “Phase transition of stored laser cooled ions”, Nature, 334:309 (1988).

    Article  ADS  Google Scholar 

  25. J.J.Bollinger and D.J.Wineland, “Microplasmas”, Scientific American (January 1990).

    Google Scholar 

  26. U.Eichmann, J.C.Bergquist, J.J.Bollinger, J.M.Gilligan, W.M.Itano and D.J.Wineland, “Young’s interference experiment with light scattered from two atoms”, Phys.Rev.Lett. 70:2359 (1993).

    Article  ADS  Google Scholar 

  27. D.J.Larson, J.C.Bergquist, J.J.Bollinger, W.M.Itano and D.J.Wineland, “Sympathetic cooling of trapped ions: a laser cooled two species non neutral plasma”, Phys.Rev.lett. 57:70 (1986).

    Article  ADS  Google Scholar 

  28. W.Nagourney, J.Sandberg and H.Dehmelt, “Shelved optical electron amplifier: observation of quantum jumps”, Phys.Rev.Lett. 56:2797 (1986);

    Article  ADS  Google Scholar 

  29. T.Sauter, W.Neuhauser, R.Blatt and P.E.Toschek, “Observation of quantum jumps”, Phys.Rev.Lett. 57:1696(1986).

    Article  ADS  Google Scholar 

  30. J.C.Bergquist, Randall G.Hulet, WM.Itano and D.J.Wineland, “Observation of quantum jumps in a single atom”, Phys.Rev.Lett. 57:1699 (1986)

    Article  ADS  Google Scholar 

  31. W.M.Itano, J.C.Bergquist, R.G.Hulet and D.Wineland, Phys.Rev.Lett. 59:2752 (1987)

    Article  ADS  Google Scholar 

  32. H.J.Carmichael and D.F.Walls, “Proposal for the measurement of the resonant Stark effect by photon correlation techniques”, J.Phys B9:L43 (1976)

    ADS  MathSciNet  Google Scholar 

  33. C.Cohen-Tannoudji, “Atoms in strong resonant fields” in “Frontiers in Laser Spectroscopy”, Les Houches summer school XXVII, R.Balian, S.Haroche and S.Liberman editors, North Holland (1977).

    Google Scholar 

  34. H.J.Kimble, M.Dagenais and L.Mandel, “Photon antibunching in resonance fluorescence”, Phys.Rev.lett. 39:691 (1977).

    Article  ADS  Google Scholar 

  35. F.Diedrich and H.Walther, “Nonclassical radiation of a single stored ion”, Phys.Rev.Lett. 58:203 (1987).

    Article  ADS  Google Scholar 

  36. R.Loudon, “The Quantum Theory of Light” (2nd edition), chapters 3 and 6, Clarendon Press (1985).

    Google Scholar 

  37. M.Orrit and J.Bernard, “Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal”, Phys.Rev.Lett. 65:2716 (1990).

    Article  ADS  Google Scholar 

  38. W.E.Moerner and L.Kador, “Optical detection and spectroscopy of single molecules in a solid”, Phys.Rev.Lett. 62:2535 (1989).

    Article  ADS  Google Scholar 

  39. T.Basché, W.E.Moerner, M.Orrit and H.Talon, “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid”, Phys.Rev.Lett. 69:1516 (1992).

    Article  ADS  Google Scholar 

  40. G.S.Hurst, M.G.Payne,S.D.Kramer and C.H.Chen, “Counting the atoms”, Physics Today 33(9): 24 (September 1990).

    Article  Google Scholar 

  41. D.Kleppner, M.G.Littman and M.L.Zimmerman, “Highly excited atoms, Scientific American pl08 (May 1981).

    Google Scholar 

  42. S.Haroche, “Des atomes géants”, La Recherche, p737 (September 1978).

    Google Scholar 

  43. S.Haroche, “Cavity Quantum Electrodynamics” in “Fundamental Systems in Quantum Optics”, Les Houches Summer School LIII, J.Dalibard, J.M.Raimond and J.Zinn-Justin editors, North-Holland (1992).

    Google Scholar 

  44. P.R.Berman (editor), “Cavity Quantum Electrodynamics”, a supplement issue to Adv.in Atom, Mol and Opt. Physics, Academic Press (1994).

    Google Scholar 

  45. H.J.Kimble, “Structure and dynamics in Cavity Quantum Electrodynamics”in ref37.

    Google Scholar 

  46. R.J.Hulet and D.Kleppner, “Rydberg atoms in circular states”, Phys.Rev.Lett. 51:1430 (1983).

    Article  ADS  Google Scholar 

  47. P.Nussenzveig, F.Bernardot,M.Brune, J.Hare, J.M.Raimond, S.Haroche and W.Gawlik, “Preparation of high-principal-quantum number “circular” states of rubidium, Phys.RevA48:3991 (1993).

    ADS  Google Scholar 

  48. R.J.Brecha, G.Raithel, C.Wagner and H.Walther, “Circular Rydberg states with very large n”, Opt.Comm. 102: 257 (1993).

    Article  ADS  Google Scholar 

  49. D.Meschede, H.Walther and G.Müller, “One atom-maser”, Phys.Rev.Lett. 54:551 (1985).

    Article  ADS  Google Scholar 

  50. M.Brune, J.M.Raimond, P.Goy, L.Davidovich and S.Haroche, “Realization of a two-photon maser oscillator”, Phys.Rev.Lett. 59:1899 (1987).

    Article  ADS  Google Scholar 

  51. M.Gross, P.Goy, C.Fabre, S.Haroche and J.M.Raimond, “Maser oscillation and microwave superradiance in small systems of Rydberg atoms”, Phys.Rev.Lett. 43:343 (1979)

    Article  ADS  Google Scholar 

  52. S.Haroche, P.Goy, J.M.Raimond, C.Fabre and M.Gross, “Exploration of radiative properties of very excited atoms, Philo.Trans.Roy.Soc. London, 307:659 (1982).

    Article  ADS  Google Scholar 

  53. P.Goy,J.M.Raimond,M.Gross and S.Haroche.”Observation of cavity enhanced single atom spontaneous emission”, Phys.Rev.Lett.50:1903 (1983).

    Article  ADS  Google Scholar 

  54. A.Aspect, J.Dalibard and G.Roger, “Experimental test of Bell’s inequalities using time varying analyzers”, Phys.Rev.Lett. 49:1804 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  55. P.Filipowicz, J.Javanainen and P.Meystre, “Theory of a microscopic maser”, Phys.RevA34, 3077 (1986).

    ADS  Google Scholar 

  56. L.A.Lugiato, M.O.Scully and H.Walther, “Connection between microscopic and macroscopic maser theory”, Phys.Rev.A 36:740 (1987).

    Article  ADS  Google Scholar 

  57. L.Davidovich, J.M.Raimond, M.Brune and S.Haroche, “Quantum theory of a two-photon micromaser”, Phys.Rev.A 36;3771 (1987).

    Article  ADS  Google Scholar 

  58. G.Rempe, F.Schmidt-Kaler and H.Walther, “Observation of subPoissonian statistics in a micromaser”, Phys.Rev.Lett. 64:2783 (1990).

    Article  ADS  Google Scholar 

  59. O.Benson, G.Raithel and H.Walther, “Quantum jumps of the micromaser field: dynamic behaviour close to the transition points”, Phys.rev.Lett. 72:3506 (1994).

    Article  ADS  Google Scholar 

  60. P.Meystre, G.rempe and H.Walther, “Very low temperature behaviour of a micromaser”, Opt.Lett. 13:1078(1988).

    Article  ADS  Google Scholar 

  61. M.Brune, S.Haroche, J.M.Raimond, L.Davidovich and N.Zagury, “Manipulation of photons in a cavity by dispersive atom-field coupling: Quantum-nondemolition measurement and generation of “Schrödinger cat states”, Phys.Rev.A45: 5193 (1992).

    ADS  Google Scholar 

  62. C.M.Caves, K.S.Thorne, R.W.D.Drever, V.D.Sandberg and M.Zimmerman, “On the measurement theory of a weak classical force coupled to a quantum mechanical oscillator-Issues of principle.” Rev.Mod.Phys. 52:341 (1980).

    Article  ADS  Google Scholar 

  63. N.Ramsey, “Molecular Beams”, Oxford University Press (1985).

    Google Scholar 

  64. M.Brune, S.Haroche, V.Lefèvre, J.M.Raimond and N.Zagury, “Quantum Nondemolition measurement of small photon numbers by Rydberg-atom phase-sensitive detection”, Phys.Rev.Lett. 65:976 (1990).

    Article  ADS  Google Scholar 

  65. M.Brune, P.Nussenzveig, F.Schmidt-Kaler, F.Bernardot, A.Maali, J.M.Raimond and S.Haroche, “From Lamb-shift to light shifts: vacuum and subphoton cavity fields measured by atomic phase sensitive detection”, Phys.Rev.Lett. 72:3339 (1994).

    Article  ADS  Google Scholar 

  66. S.Haroche, M.Brune and J.M.Raimond, “Measuring photon numbers in a cavity by atomic interferonmtry: optimizing the convergence procedure”, J.Phys.II France 2:659 (1992).

    Article  Google Scholar 

  67. S.Haroche, “Atoms and photons in high Q cavities: new tests of quantum theory” in “Fundamental Problems in Quantum Theory”, D.Greenberger (editor), New York Academy of Sciences (1994).

    Google Scholar 

  68. D.Mermin , “What is wrong with these elements of reality”, Physics Today, 43(6):7 (June 1990).

    Article  Google Scholar 

  69. B.Yurke and D.Stoler, “Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion”, Phys.Rev.Lett. 57:13 (1986).

    Article  ADS  Google Scholar 

  70. E.Schrödinger in Naturwissenschaften 23:807 and 23:844 (1935)

    Article  ADS  Google Scholar 

  71. S.Haroche, M.Brune, J.M.Raimond and L.Davidovich, “Mesoscopic quantum coherences in Cavity QED” in “Fundamentals of Quantum Optics III”, F.Ehlotzky (editor), Springer Verlag (1993).

    Google Scholar 

  72. P.Meystre, “Cavity quantum optics”, Progress in OpticsXXX edited by E.Wolf (Elsevier Science 1992).

    Google Scholar 

  73. L.Davidovich,A.Maali,M.Brune, J.M.Raimond and S.Haroche, “Quantum switches and nonlocal microwave fields”, Phys.Rev.Lett. 71:2360 (1993).

    Article  ADS  Google Scholar 

  74. L.Davidovich, N.Zagury, M.Brune, J.M.Raimond and S.Haroche, “Teleportation of an atomic state between two cavities using nonlocal microwave fileds”, Phys.Rev A (August 1994).

    Google Scholar 

  75. C.H.Bennet, G.Brassard, C.Crepeau, R.Josza, A.Peres and W.Wooters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolski-Rosen channels”, Phys.Rev.Lett.70:1895 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  76. D.Deutsch, “Quantum theory, the Church-Turing principle and the universal quantum computer”, Proc.Roy.Soc. London, A400:97 (1985).

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Haroche, S. (1995). Experiments with Single Atoms, Molecules or Photons. In: Beltrametti, E.G., Lévy-Leblond, JM. (eds) Advances in Quantum Phenomena. NATO ASI Series, vol 347. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1975-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1975-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5813-8

  • Online ISBN: 978-1-4615-1975-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics