Skip to main content

Quantum Correlations beyond Bell’s Inequalities

  • Chapter
Advances in Quantum Phenomena

Part of the book series: NATO ASI Series ((NSSB,volume 347))

  • 221 Accesses

Abstract

In 1964, John Bell1 achieved a remarkable feat. His theorem states that a very general class of local realistic theories is incompatible with quantum mechanics. This accomplishment is of an exceptional nature, because John Bell did not have to know explicitly the details of the individual theories which were excluded by his theorem. The theorem is usually stated in terms of the spin correlations either between two fermions or between two photons, where in both cases both particles enjoy a two-dimensional spin space. (See the early review by Clauser and Shimony.2) The most often used state to discuss these correlations is the two-fermion singlet state

$$ |\psi \rangle = {1 \over {\sqrt 2 }}{(| \uparrow \rangle _1}| \downarrow {\rangle _2} - |{ \downarrow _1}| \uparrow {\rangle _2}). $$
((1))

Whenever we write such a state, as a product of kets we imply the tensor product because each particle is defined in its own Hilbert space. Nearly all the experiments with spin correlations exploited the correlations between two photons in atomic cascades. The first such experiment was performed by Clauser and Freedman3 with the development culminating in the experiments of Aspect et al.4 In the last one of these experiments, time-varied measurement was used in such a way that the photons were switched to different polarizers while in-flight. This was intended to rule out any conspiratory type of local theory where, through some yet unknown communication channels between detectors and source, the quantum correlations are established. Yet, due to an unfortunate numerical coincidence between switching frequency and photon flight time,5 that experiment cannot be called conclusive. Furthermore, this experiment used periodic switching, and it is easy to see that the definitive experiment would have to use a purely random switch.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.S. Bell, On the Einstein-Podolsky-Rosen Paradox. Physics 1, 195–200 (1964).

    Google Scholar 

  2. J.S. Bell, “Speakable and Unspeakable in Quantum Mechanics” (Cambridge U.P., Cambridge, 1987).

    MATH  Google Scholar 

  3. J.S. Clauser and A. Shimony, Bell’s Theorem: Experimental Tests and Implications. Rep. Prog. Phys. 41 (1978) 1881.

    Article  ADS  Google Scholar 

  4. S.J. Freedman and J.S. Clauser, Experimental Test of Local Hidden-Variable Theories. Phys. Rev. Lett. 28 (1972) 938– 941.

    Article  ADS  Google Scholar 

  5. A. Aspect, J. Dalibard and G. Roger, Experimental Tests of Bell’s Inequalities Using Time-Varying Analyzers. Phys. Rev. Lett. 49 (1982) 1804–1807.

    Article  MathSciNet  ADS  Google Scholar 

  6. A. Zeilinger, Testing Bell’s Inequalities with Periodic Switching. Phys. Lett. A 118 (1986) 1.

    Article  MathSciNet  ADS  Google Scholar 

  7. F. Selleri, A. Zeilinger, Local Deterministic Description of Einstein-Podolski-Rosen Experiments. Found. Phys. 18 (1988) 1141.

    Article  ADS  Google Scholar 

  8. A. Einstein, B. Podolsky and N. Rosen, Can the Quantum-Mechanical Description of Physical Reality be Considered Complete? Phys. Rev. 47 (1935) 777–780.

    Article  ADS  MATH  Google Scholar 

  9. M.A. Horne, A. Zeilinger, A Bell-Type Experiment Using Linear Momenta. Symposium on the Foundations of Modern Physics, Joensuu 1985, P. Lahti and P. Mittelstaedt (eds.), World Scientific Publ. (Singapore), p. 435.

    Google Scholar 

  10. M. Home, A. Zeilinger, A Possible Spin-Less Experimental Test of Bell’s Inequality. In “Microphysical Reality and Quantum Formalism”, A. van der Merwe, F. Selleri, G. Tarozzi (eds.), Kluwer (Dordrecht), 1988, p. 401.

    Google Scholar 

  11. D.C. Burnham, D.L. Weinberg, Observation of Simultaneity in Parametric Production of Optical Photon Pairs. Phys. Rev. Lett. 25 (1970) 84.

    Article  ADS  Google Scholar 

  12. CO. Alley, Y.H. Shih, in “Proc. Symp. on Foundations of Modern Physics”, P. Lahti, P. Mittelstaedt, eds., World Scientific, Singapore (1985), p. 435.

    Google Scholar 

  13. Y.H. Shih, CO. Alley, Phys. Rev. Lett. 62, (1988) 2921.

    Article  ADS  Google Scholar 

  14. M.A. Horne, A. Shimony, A. Zeilinger, Two-Particle Interferometry. Phys. Rev. Lett. 62 (1989) 2209.

    Article  ADS  Google Scholar 

  15. M.A. Horne, A. Shimony, A. Zeilinger, Two-Particle Interferometry, Nature 347 (1990) 429.

    Article  ADS  Google Scholar 

  16. J.G. Rarity, P.R. Tapster, Experimental Realization of Bell’s Inequalities Based on Phase and Momentum. Phys. Rev. Lett. 64 (1990) 2495.

    Article  ADS  Google Scholar 

  17. E. Schrödinger, Die gegenwärtige Situation in der Quantenrnechanik, Naturwis-senschaften 23 (1935) 807–812; 823–828; 844–849, English translation in Proceedings of the American Philosophical Society, 124 (1980) 323–338.

    Article  ADS  Google Scholar 

  18. D. Bohm, “Quantum Theory”, Prentice-Hall, Englewood Cliffs, NJ (1951) 614–623.

    Google Scholar 

  19. D. Bohm, Phys. Rev. 85 (1952) 166.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. M. Zukowski, A. Zeilinger, M.A. Horne and A.K. Ekert, Event-Ready-Detectors Bell Experiment via Entanglement Swapping, Phys. Rev. Lett. 71 (1993) 4287.

    Article  ADS  Google Scholar 

  21. M. Reck, A. Zeilinger, H.J. Bernstein and P. Bertani, Experimental Realization of Any Discrete Unitary Operator. Phys. Rev. Lett. 73 (1994) 58.

    Article  ADS  Google Scholar 

  22. C.K. Hong, Z.Y. Ou and L. Mandel, Phys. Rev. Lett. 59 (1987) 2044.

    Article  ADS  Google Scholar 

  23. A. Zeilinger, General Properties of Lossless Beam Splitters in Interferometry. Am. J. Phys. 49 (1981) 882.

    Article  ADS  Google Scholar 

  24. R. Loudon, in “Coherence and Quantum Optics VI”, J.H. Eberly et al. (eds.), Plenum Press, New York (1990) pp. 703–708.

    Chapter  Google Scholar 

  25. R. Loudon, in “Disorder and Condensed Matter Physics”, J.A. Blackman and J. Taguena (eds.), Clarendon Press, Oxford (1991) pp. 441–454.

    Google Scholar 

  26. A. Zeilinger, H.J. Bernstein and M.A. Home, Information Transfer with Two-State, Two-Particle Quantum Systems. J. Modern Optics (in press).

    Google Scholar 

  27. A. Zeilinger, Probing Higher Dimensions of Hilbert Space in Experiment. Acta Phys. Polonica A85 (1994) 717.

    Google Scholar 

  28. K. Mattle, M. Michler, H. Weinfurter, A. Zeilinger and M. Zukowski, Nonclassical Statistics at Multiport Beamsplitters. Appl. Phys. B (in press).

    Google Scholar 

  29. A. Zeilinger, H.J. Bernstein, D.M. Greenberger, M.A. Horne and M. Zukowski, Controlling Entanglement in Quantum Optics, in “Quantum Control and Measurement”, H. Ezawa, Y. Murayama (eds.), Elsevier Science Publishers (1993) p. 9.

    Google Scholar 

  30. T.J. Herzog, J.G. Rarity, H. Weinfurter and A. Zeilinger, Frustrated Two-Photon Creation via Interference, Phys. Rev. Lett. 72 (1994) 629.

    Article  ADS  Google Scholar 

  31. D. Greenberger, M.A. Home, A. Zeilinger, Going Beyond Bell’s Theorem, in “Bell’s Theorem, Quantum Theory, and Conceptions of the Universe”, M. Kafatos (Ed.), Kluwer, Dordrecht (1989) p.69.

    Google Scholar 

  32. D.M. Greenberger, M.A. Horne and A. Zeilinger, Multiparticle Interferometry and the Superposition Principles, Physics Today 46, 8 (August 1993) 22.

    Article  Google Scholar 

  33. D.M. Greenberger, M.A. Home, A. Shimony, A. Zeilinger, Bell’s Theorem Without Inequalities, Am. J. Phys. 58 (1990) 1131.

    Article  ADS  Google Scholar 

  34. N.D. Mermin, Quantum Mysteries Revisited. Am. J. Phys. 58 (1990) 731.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zeilinger, A. (1995). Quantum Correlations beyond Bell’s Inequalities. In: Beltrametti, E.G., Lévy-Leblond, JM. (eds) Advances in Quantum Phenomena. NATO ASI Series, vol 347. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1975-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1975-1_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5813-8

  • Online ISBN: 978-1-4615-1975-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics