Skip to main content

Electron Conduction and Quantum Phenomena in 2D Heterostructures

  • Chapter
Advances in Quantum Phenomena

Part of the book series: NATO ASI Series ((NSSB,volume 347))

Abstract

A quasi two-dimensional electron gas confined at the interface between two semiconductors is a nearly ideal low disordered system. Its low temperature transport properties are dominated by a large variety of quantum phenomena. Some recent theoretical and experimental studies on the correlation energy of the plasma, on the spin-splitting of the conduction band, on the observation of weak antilocalization and on a unified understanding of the Integer and Fractional Quantum Hall effects are discussed in order to illustrate the very rich physics of these artificial structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Ando, A.B. Fowler and F. Stern, Electronic Properties of Two-dimensional Systems, Review of Modern Physics 54: 437 (1982).

    Article  ADS  Google Scholar 

  2. C.W.J. Beenakker and H. van Houten, Quantum Transport in Semiconductor Nanostructures, Solid State Physics, ed. H. Ehrenreich and D. Turnbull, Academic Press, 44:1 (1991)

    Google Scholar 

  3. Y. Imry, in Directions in Condensed Matter Physics, ed. by G. Grinstein and G. Mazenko, World Scientific Singapore, 1:101 (1986).

    Google Scholar 

  4. D. Mailly, C. Chapelier and A. Benoit, Experimental Observation of Persistents Currents in a Single Loop, Phys. Rev. Lett. 70:2020 (1993).

    Article  ADS  Google Scholar 

  5. K. von Klitzing, G. Dorda and M. Pepper, New Method for High Accuracy Determination of the Fine Structure Constant based on Quantum Hall Resistance, Phys. Rev. Lett. 45:494 (1980).

    Article  ADS  Google Scholar 

  6. D.C. Tsui, H.L. Stormer and A.C. Gossard, Two-Dimensional Magnetotransport in the Extreme Quantum Limit, Phys. Rev. Lett. 48:1559 (1982).

    Article  ADS  Google Scholar 

  7. E.Y. Andrei, G. Deville, D.C. Glattli, F.I.B. Williams, E. Paris and B. Etienne, Observation of a Magnetically Induced Wigner Solid, Phys. Rev. Lett. 60:2765 (1988).

    Article  ADS  Google Scholar 

  8. The Quantum Hall Effect, ed. by R.E. Prange and S.M. Girvin, Graduate Texts in Contemporary Physics, Springer Verlag (1987).

    Google Scholar 

  9. T. Chakraborty and P. Piettiläïnen, The Fractional Quantum Hall Effect, Springer Series in Solid-State Sciences, vol. 85 (1988).

    Google Scholar 

  10. D. Pines, Elementary Excitations in Solids, W.A. Benjamin Inc. (1964).

    MATH  Google Scholar 

  11. A. Ishihara, Electron Correlations in Two Dimensions, Solid State Physics, ed. H. Ehrenreich and D. Turnbull, Academic Press, 42:271 (1989).

    Google Scholar 

  12. G.E. Bauer and T. Ando, Theory of Band Gap Renormalisation in Modulation-Doped Quantum Wells, J. Phys. C 19:1537 (1986).

    Article  ADS  Google Scholar 

  13. A. Gold and L. Calmels, Correlation in Fermi Liquids : Analytical Results for the Local-Field Correction in Two and Three Dimensions, Phys. Rev. B48:11622 (1993).

    ADS  Google Scholar 

  14. M. Combescot, O. Betbeder-Matibet, C. Benoit à la Guillaume and K. Boujdaria, Hartree Energy in Semiconductor Quantum Wells, Solid State Comm. 88: 309 (1993).

    Article  ADS  Google Scholar 

  15. O. Betbeder-Matibet, M. Combescot and C. Tanguy, Coulomb Energy of Quasi-2D Electron Gases in Quantum Wells, Phys. Rev. Lett 72:4125 (1994).

    Article  ADS  Google Scholar 

  16. P. Pfeffer and W. Zawadski, Conduction Electrons in GaAs : Five Level k.p Theory and Polaron Effects, Phys. Rev. B41:1561 (1990).

    ADS  Google Scholar 

  17. B. Jusserand, D. Richards, H. Peric and B. Etienne, Zero-Magnetic Spin Splitting in the GaAs Conduction Band from Raman Scattering on Modulation-Doped Quantum Wells, Phys. Rev. Lett. 69:848 (1992).

    Article  ADS  Google Scholar 

  18. E.I. Rashba, Properties of Semiconductors with an Extremum Loop I, Fizika Tverdovo Tela, 2:1224 (1960).

    Google Scholar 

  19. B. Jusserand, D. Richards, G. Allan, C. Priester and B. Etienne, Spin Orientation at Semiconductor Interfaces, submitted for publication.

    Google Scholar 

  20. A. Cassam-Chenai and B. Shapiro, Two-dimensional Weak Localisation beyond Diffusion Approximation, preprint.

    Google Scholar 

  21. M.I. Dyakonov, Magnetoconductance due to Weak Localization Beyond the Diffusion Approximation : the High Field Limit, preprint.

    Google Scholar 

  22. G.Bergmann, Weak Anti-Localization - An experimental Proof for the Destructive Interference of Rotated Spin 1/2, Solid State Comm. 42:815 (1982).

    Article  ADS  Google Scholar 

  23. M.V. Berry, Quantal Phase Factors Accompanying Adiabatic Changes, Proc. R. Soc. Lond. A 392:45 (1984).

    Article  ADS  MATH  Google Scholar 

  24. R.J. Elliott, Theory of the Effect of Spin-Orbit Coupling on Magnetic Resonance in Some Semiconductors, Phys. Rev. 96:266 (1954).

    Article  ADS  MATH  Google Scholar 

  25. M.I. Dyakonov and V.Yu. Kachorovskii, Spin Relaxation of Two-Dimensional Electrons in Noncentrosymmetric Semiconductors, Sov. Phys. Semicond. 20:110 (1986).

    Google Scholar 

  26. W. Knap, C. Skierbiszewski, E. Litwin-Staszewska, F. Kobbi, J.L. Robert, Weak Antilocalization and Spin Precession in Quantum Wells, preprint.

    Google Scholar 

  27. G. Bergmann, Weak Localization in Thin Films, Phys. Rep. 107:1 (1984).

    Article  ADS  Google Scholar 

  28. P.D. Dresselhaus, C.M.A. Papavassiliou, R.G. Wheeler and R.N. Sacks, Observation of Spin Precession in GaAs Inversion Layers Using Antilocalization, Phys. Rev. Lett. 69:106 (1992).

    Article  ADS  Google Scholar 

  29. H. Riechert, H.-J. Drouhin and C. Hermann, Phys. Rev. B 38:4136 (1988).

    Article  ADS  Google Scholar 

  30. D.G. Polyakov and B.I. Shklovskii, Variable Range Hopping as the Mechanism of the Conductivity Peak Broadening in the Quantum Hall Regime, Phys. Rev. Lett. 70:3796 1993).

    Article  ADS  Google Scholar 

  31. R.B. Laughlin, Quantized Hall Conductivity in Two Dimensions, Phys. Rev. B 23:5632 (1981).

    Article  ADS  Google Scholar 

  32. D.B. Chklovskii, B.I. Shklovskii and L.I. Glazman, Electrostatics of Edge Channels, Phys.Rev. B 46:4026 (1990).

    Article  ADS  Google Scholar 

  33. D.B. Chklovskii, K.A. Matveev and B.I. Shklovskii, Ballistic Conductance of Electrons in the Quantum Hall Regime, Phys. Rev. B 47: 12605 (1993).

    Article  ADS  Google Scholar 

  34. R.B. Laughlin, Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations, Phys. Rev. Lett. 50:1395 (1983).

    Article  ADS  Google Scholar 

  35. R. Willett, J.P. Eisenstein, H.L. Stormer, D.C. Tsui, A.C. Gossard and J.H. English,Observation of an Even-Denominator Quantum Number in the Fractional Quantum Hall Effect, Phys. Rev. Lett. 59:1776 (1987).

    Article  ADS  Google Scholar 

  36. J.K. Jain, Theory of the Fractional Quantum Hall Effect, Phys. Rev. B 41:7653 (1990).

    Article  ADS  Google Scholar 

  37. J.K. Jain, Strongly Correlated Fractional Quantum Hall States : Description in terms of Weakly Interacting Composite Fermions, Surface Science 263:65 (1992).

    Article  ADS  Google Scholar 

  38. S.Forte, Quantum Mechanics and Field Theory with Fractional Spin and Statistics, Rev. of Modern Physics 64:193 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  39. R.R. Du, H.L. Stormer, D.C. Tsui, L.N. Pfeiffer, and K.W. West, Experimental Evidence for New Particles in the Fractional Quantum Hall Effect, Phys. Rev. Lett. 70:2944 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Etienne, B. (1995). Electron Conduction and Quantum Phenomena in 2D Heterostructures. In: Beltrametti, E.G., Lévy-Leblond, JM. (eds) Advances in Quantum Phenomena. NATO ASI Series, vol 347. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1975-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1975-1_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5813-8

  • Online ISBN: 978-1-4615-1975-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics